Cargando…
The Smart Predicting of Algal Concentration for Safer Drinking Water Production with Sensor Data
To better predict the timely variation of algal blooms and other vital factors for safer drinking water production, a new AI scanning–focusing process was investigated for improving the simulation and prediction of algae counts. With a feedforward neural network (FNN) as a base, nerve cell numbers i...
Autores principales: | Yu, Han, Li, Jing, Holmer, Linda, Köhler, Stephan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255630/ https://www.ncbi.nlm.nih.gov/pubmed/37299878 http://dx.doi.org/10.3390/s23115151 |
Ejemplares similares
-
Safer sips: removing arsenic from drinking water.
por: Breslin, K
Publicado: (1998) -
Health Risk Assessment of Cyanobacterial (Blue-green Algal) Toxins in Drinking Water
por: Falconer, Ian R., et al.
Publicado: (2005) -
To Make the Water Safer
por: Li, Peiyue
Publicado: (2020) -
A smart risk-responding polymer membrane for safer batteries
por: Zhang, Ying, et al.
Publicado: (2023) -
Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir
por: Zhang, Haihan, et al.
Publicado: (2018)