Cargando…
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
One of the challenges of spatial cognition, such as self-localization and navigation, is to develop an efficient learning approach capable of mimicking human ability. This paper proposes a novel approach for topological geolocalization on the map using motion trajectory and graph neural networks. Sp...
Autores principales: | Zha, Bing, Yilmaz, Alper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255631/ https://www.ncbi.nlm.nih.gov/pubmed/37299825 http://dx.doi.org/10.3390/s23115098 |
Ejemplares similares
-
Vertex-deleted subgraphs and regular factors from regular graph()
por: Lu, Hongliang, et al.
Publicado: (2011) -
TS-Extractor: large graph exploration via subgraph extraction based on topological and semantic information
por: Fu, Kun, et al.
Publicado: (2020) -
SING: Subgraph search In Non-homogeneous Graphs
por: Di Natale, Raffaele, et al.
Publicado: (2010) -
Graph Neural Network-Based Efficient Subgraph Embedding Method for Link Prediction in Mobile Edge Computing
por: Deng, Xiaolong, et al.
Publicado: (2023) -
Faster algorithms for counting subgraphs in sparse graphs
por: Bressan, Marco
Publicado: (2021)