Cargando…

Identification and Expression Analysis of Phosphatidylinositol Transfer Proteins Genes in Rice

The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed...

Descripción completa

Detalles Bibliográficos
Autores principales: Pei, Mengtian, Xie, Xuze, Peng, Baoyi, Chen, Xinchi, Chen, Yixuan, Li, Ya, Wang, Zonghua, Lu, Guodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255633/
https://www.ncbi.nlm.nih.gov/pubmed/37299101
http://dx.doi.org/10.3390/plants12112122
Descripción
Sumario:The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.