Cargando…

Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core

Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jian, Zhang, Wenjie, Zhang, Yating, Li, Haolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255814/
https://www.ncbi.nlm.nih.gov/pubmed/37299297
http://dx.doi.org/10.3390/polym15112498
_version_ 1785056963456925696
author Wang, Jian
Zhang, Wenjie
Zhang, Yating
Li, Haolin
author_facet Wang, Jian
Zhang, Wenjie
Zhang, Yating
Li, Haolin
author_sort Wang, Jian
collection PubMed
description Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) were initially synthesized using the Living Anionic Polymerization-Induced Self-Assembly (LAP PISA) technique. Subsequently, the tert-butyl group on the tert-butyl acrylate (tBA) monomer unit in the diblock copolymer, yielded from the LAP PISA process, was subjected to hydrolysis using trifluoroacetic acid (CF(3)COOH), transforming it into carboxyl groups. This resulted in the formation of polystyrene-block-poly(acrylic acid) (PS-b-PAA) nano-self-assembled particles of various morphologies. The pre-hydrolysis diblock copolymer PS-b-PtBA produced nano-self-assembled particles of irregular shapes, whereas post-hydrolysis regular spherical and worm-like nano-self-assembled particles were generated. Utilizing PS-b-PAA nano-self-assembled particles that containing carboxyl groups as polymer templates, Fe(3)O(4) was integrated into the core region of the nano-self-assembled particles. This was achieved based on the complexation between the carboxyl groups on the PAA segments and the metal precursors, facilitating the successful synthesis of organic–inorganic composite nanoparticles with Fe(3)O(4) as the core and PS as the shell. These magnetic nanoparticles hold potential applications as functional fillers in the plastic and rubber sectors.
format Online
Article
Text
id pubmed-10255814
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102558142023-06-10 Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core Wang, Jian Zhang, Wenjie Zhang, Yating Li, Haolin Polymers (Basel) Article Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) were initially synthesized using the Living Anionic Polymerization-Induced Self-Assembly (LAP PISA) technique. Subsequently, the tert-butyl group on the tert-butyl acrylate (tBA) monomer unit in the diblock copolymer, yielded from the LAP PISA process, was subjected to hydrolysis using trifluoroacetic acid (CF(3)COOH), transforming it into carboxyl groups. This resulted in the formation of polystyrene-block-poly(acrylic acid) (PS-b-PAA) nano-self-assembled particles of various morphologies. The pre-hydrolysis diblock copolymer PS-b-PtBA produced nano-self-assembled particles of irregular shapes, whereas post-hydrolysis regular spherical and worm-like nano-self-assembled particles were generated. Utilizing PS-b-PAA nano-self-assembled particles that containing carboxyl groups as polymer templates, Fe(3)O(4) was integrated into the core region of the nano-self-assembled particles. This was achieved based on the complexation between the carboxyl groups on the PAA segments and the metal precursors, facilitating the successful synthesis of organic–inorganic composite nanoparticles with Fe(3)O(4) as the core and PS as the shell. These magnetic nanoparticles hold potential applications as functional fillers in the plastic and rubber sectors. MDPI 2023-05-29 /pmc/articles/PMC10255814/ /pubmed/37299297 http://dx.doi.org/10.3390/polym15112498 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Jian
Zhang, Wenjie
Zhang, Yating
Li, Haolin
Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title_full Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title_fullStr Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title_full_unstemmed Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title_short Preparation of Polymer-Based Nano-Assembled Particles with Fe(3)O(4) in the Core
title_sort preparation of polymer-based nano-assembled particles with fe(3)o(4) in the core
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255814/
https://www.ncbi.nlm.nih.gov/pubmed/37299297
http://dx.doi.org/10.3390/polym15112498
work_keys_str_mv AT wangjian preparationofpolymerbasednanoassembledparticleswithfe3o4inthecore
AT zhangwenjie preparationofpolymerbasednanoassembledparticleswithfe3o4inthecore
AT zhangyating preparationofpolymerbasednanoassembledparticleswithfe3o4inthecore
AT lihaolin preparationofpolymerbasednanoassembledparticleswithfe3o4inthecore