Cargando…

Hybrid Domain Consistency Constraints-Based Deep Neural Network for Facial Expression Recognition

Facial expression recognition (FER) has received increasing attention. However, multiple factors (e.g., uneven illumination, facial deflection, occlusion, and subjectivity of annotations in image datasets) probably reduce the performance of traditional FER methods. Thus, we propose a novel Hybrid Do...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Xiaoliang, Sun, Junyi, Liu, Gendong, Shen, Chen, Dai, Zhicheng, Zhao, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255831/
https://www.ncbi.nlm.nih.gov/pubmed/37299930
http://dx.doi.org/10.3390/s23115201
Descripción
Sumario:Facial expression recognition (FER) has received increasing attention. However, multiple factors (e.g., uneven illumination, facial deflection, occlusion, and subjectivity of annotations in image datasets) probably reduce the performance of traditional FER methods. Thus, we propose a novel Hybrid Domain Consistency Network (HDCNet) based on a feature constraint method that combines both spatial domain consistency and channel domain consistency. Specifically, first, the proposed HDCNet mines the potential attention consistency feature expression (different from manual features, e.g., HOG and SIFT) as effective supervision information by comparing the original sample image with the augmented facial expression image. Second, HDCNet extracts facial expression-related features in the spatial and channel domains, and then it constrains the consistent expression of features through the mixed domain consistency loss function. In addition, the loss function based on the attention-consistency constraints does not require additional labels. Third, the network weights are learned to optimize the classification network through the loss function of the mixed domain consistency constraints. Finally, experiments conducted on the public RAF-DB and AffectNet benchmark datasets verify that the proposed HDCNet improved classification accuracy by 0.3–3.84% compared to the existing methods.