Cargando…

Analysis of Polarization Detector Performance Parameters on Polarization 3D Imaging Accuracy

Three-dimensional (3D) reconstruction of objects using the polarization properties of diffuse light on the object surface has become a crucial technique. Due to the unique mapping relation between the degree of polarization of diffuse light and the zenith angle of the surface normal vector, polariza...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Pengzhang, Yao, Dong, Ma, Tianxiang, Shen, Honghai, Wang, Weiguo, Wang, Qingyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255873/
https://www.ncbi.nlm.nih.gov/pubmed/37299856
http://dx.doi.org/10.3390/s23115129
Descripción
Sumario:Three-dimensional (3D) reconstruction of objects using the polarization properties of diffuse light on the object surface has become a crucial technique. Due to the unique mapping relation between the degree of polarization of diffuse light and the zenith angle of the surface normal vector, polarization 3D reconstruction based on diffuse reflection theoretically has high accuracy. However, in practice, the accuracy of polarization 3D reconstruction is limited by the performance parameters of the polarization detector. Improper selection of performance parameters can result in large errors in the normal vector. In this paper, the mathematical models that relate the polarization 3D reconstruction errors to the detector performance parameters including polarizer extinction ratio, polarizer installation error, full well capacity and analog-to-digital (A2D) bit depth are established. At the same time, polarization detector parameters suitable for polarization 3D reconstruction are provided by the simulation. The performance parameters we recommend include an extinction ratio ≥ 200, an installation error [Formula: see text] [−1°, 1°], a full-well capacity ≥ 100 [Formula: see text] , and an A2D bit depth ≥ 12 bits. The models provided in this paper are of great significance for improving the accuracy of polarization 3D reconstruction.