Cargando…
Deep Learning-Aided Modulation Recognition for Non-Orthogonal Signals
Automatic Modulation Recognition (AMR) can obtain the modulation mode of the received signal for subsequent processing without the assistance of the transmitter. Although the existing AMR methods have been mature for the orthogonal signals, these methods face challenges when deployed in non-orthogon...
Autores principales: | Fan, Jiaqi, Wu, Linna, Zhang, Jinbo, Dong, Junwei, Wen, Zhong, Zhang, Zehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255955/ https://www.ncbi.nlm.nih.gov/pubmed/37299960 http://dx.doi.org/10.3390/s23115234 |
Ejemplares similares
-
Modulation Recognition of Radar Signals Based on Adaptive Singular Value Reconstruction and Deep Residual Learning
por: Chen, Kuiyu, et al.
Publicado: (2021) -
Deep Binary Classification via Multi-Resolution Network and Stochastic Orthogonality for Subcompact Vehicle Recognition
por: Shin, Joongchol, et al.
Publicado: (2020) -
Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition
por: Zhang, Xiongtao, et al.
Publicado: (2023) -
Equivariant orthogonal spectra and S-modules
por: Mandell, MA, et al.
Publicado: (2002) -
Generalized Discriminant Orthogonal Nonnegative Tensor Factorization for Facial Expression Recognition
por: XiuJun, Zhang, et al.
Publicado: (2014)