Cargando…
Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model
Sentiment is currently one of the most emerging areas of research due to the large amount of web content coming from social networking websites. Sentiment analysis is a crucial process for recommending systems for most people. Generally, the purpose of sentiment analysis is to determine an author’s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255967/ https://www.ncbi.nlm.nih.gov/pubmed/37299959 http://dx.doi.org/10.3390/s23115232 |
_version_ | 1785057000559738880 |
---|---|
author | Areshey, Ali Mathkour, Hassan |
author_facet | Areshey, Ali Mathkour, Hassan |
author_sort | Areshey, Ali |
collection | PubMed |
description | Sentiment is currently one of the most emerging areas of research due to the large amount of web content coming from social networking websites. Sentiment analysis is a crucial process for recommending systems for most people. Generally, the purpose of sentiment analysis is to determine an author’s attitude toward a subject or the overall tone of a document. There is a huge collection of studies that make an effort to predict how useful online reviews will be and have produced conflicting results on the efficacy of different methodologies. Furthermore, many of the current solutions employ manual feature generation and conventional shallow learning methods, which restrict generalization. As a result, the goal of this research is to develop a general approach using transfer learning by applying the “BERT (Bidirectional Encoder Representations from Transformers)”-based model. The efficiency of BERT classification is then evaluated by comparing it with similar machine learning techniques. In the experimental evaluation, the proposed model demonstrated superior performance in terms of outstanding prediction and high accuracy compared to earlier research. Comparative tests conducted on positive and negative Yelp reviews reveal that fine-tuned BERT classification performs better than other approaches. In addition, it is observed that BERT classifiers using batch size and sequence length significantly affect classification performance. |
format | Online Article Text |
id | pubmed-10255967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102559672023-06-10 Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model Areshey, Ali Mathkour, Hassan Sensors (Basel) Article Sentiment is currently one of the most emerging areas of research due to the large amount of web content coming from social networking websites. Sentiment analysis is a crucial process for recommending systems for most people. Generally, the purpose of sentiment analysis is to determine an author’s attitude toward a subject or the overall tone of a document. There is a huge collection of studies that make an effort to predict how useful online reviews will be and have produced conflicting results on the efficacy of different methodologies. Furthermore, many of the current solutions employ manual feature generation and conventional shallow learning methods, which restrict generalization. As a result, the goal of this research is to develop a general approach using transfer learning by applying the “BERT (Bidirectional Encoder Representations from Transformers)”-based model. The efficiency of BERT classification is then evaluated by comparing it with similar machine learning techniques. In the experimental evaluation, the proposed model demonstrated superior performance in terms of outstanding prediction and high accuracy compared to earlier research. Comparative tests conducted on positive and negative Yelp reviews reveal that fine-tuned BERT classification performs better than other approaches. In addition, it is observed that BERT classifiers using batch size and sequence length significantly affect classification performance. MDPI 2023-05-31 /pmc/articles/PMC10255967/ /pubmed/37299959 http://dx.doi.org/10.3390/s23115232 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Areshey, Ali Mathkour, Hassan Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title | Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title_full | Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title_fullStr | Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title_full_unstemmed | Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title_short | Transfer Learning for Sentiment Classification Using Bidirectional Encoder Representations from Transformers (BERT) Model |
title_sort | transfer learning for sentiment classification using bidirectional encoder representations from transformers (bert) model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255967/ https://www.ncbi.nlm.nih.gov/pubmed/37299959 http://dx.doi.org/10.3390/s23115232 |
work_keys_str_mv | AT aresheyali transferlearningforsentimentclassificationusingbidirectionalencoderrepresentationsfromtransformersbertmodel AT mathkourhassan transferlearningforsentimentclassificationusingbidirectionalencoderrepresentationsfromtransformersbertmodel |