Cargando…
Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks
The field of computational paralinguistics emerged from automatic speech processing, and it covers a wide range of tasks involving different phenomena present in human speech. It focuses on the non-verbal content of human speech, including tasks such as spoken emotion recognition, conflict intensity...
Autores principales: | Vetráb, Mercedes, Gosztolya, Gábor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256007/ https://www.ncbi.nlm.nih.gov/pubmed/37299935 http://dx.doi.org/10.3390/s23115208 |
Ejemplares similares
-
An Optimized DNN Model for Real-Time Inferencing on an Embedded Device
por: Park, Jungme, et al.
Publicado: (2023) -
A hybrid DNN–LSTM model for detecting phishing URLs
por: Ozcan, Alper, et al.
Publicado: (2021) -
Multiple levels of linguistic and paralinguistic features contribute to voice recognition
por: Mary Zarate, Jean, et al.
Publicado: (2015) -
Five-Year-Olds’ and Adults’ Use of Paralinguistic Cues to Overcome Referential Uncertainty
por: Thacker, Justine M., et al.
Publicado: (2018) -
BatteryDataExtractor: battery-aware text-mining software embedded with BERT models
por: Huang, Shu, et al.
Publicado: (2022)