Cargando…
YOLOv5s-Fog: An Improved Model Based on YOLOv5s for Object Detection in Foggy Weather Scenarios
In foggy weather scenarios, the scattering and absorption of light by water droplets and particulate matter cause object features in images to become blurred or lost, presenting a significant challenge for target detection in autonomous driving vehicles. To address this issue, this study proposes a...
Autores principales: | Meng, Xianglin, Liu, Yi, Fan, Lili, Fan, Jingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256052/ https://www.ncbi.nlm.nih.gov/pubmed/37300048 http://dx.doi.org/10.3390/s23115321 |
Ejemplares similares
-
IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments
por: Qiu, Yongsheng, et al.
Publicado: (2023) -
YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection
por: Zhu, Ronghua, et al.
Publicado: (2023) -
GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
por: Zhao, Yue, et al.
Publicado: (2023) -
YOLOv5s-DSD: An Improved Aerial Image Detection Algorithm Based on YOLOv5s
por: Sun, Chaoyue, et al.
Publicado: (2023) -
UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
por: Wang, Gang, et al.
Publicado: (2023)