Cargando…
XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning
IoT devices have grown in popularity in recent years. Statistics show that the number of online IoT devices exceeded 35 billion in 2022. This rapid growth in adoption made these devices an obvious target for malicious actors. Attacks such as botnets and malware injection usually start with a phase o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256059/ https://www.ncbi.nlm.nih.gov/pubmed/37300025 http://dx.doi.org/10.3390/s23115298 |
_version_ | 1785057022463442944 |
---|---|
author | Alani, Mohammed M. Damiani, Ernesto |
author_facet | Alani, Mohammed M. Damiani, Ernesto |
author_sort | Alani, Mohammed M. |
collection | PubMed |
description | IoT devices have grown in popularity in recent years. Statistics show that the number of online IoT devices exceeded 35 billion in 2022. This rapid growth in adoption made these devices an obvious target for malicious actors. Attacks such as botnets and malware injection usually start with a phase of reconnaissance to gather information about the target IoT device before exploitation. In this paper, we introduce a machine-learning-based detection system for reconnaissance attacks based on an explainable ensemble model. Our proposed system aims to detect scanning and reconnaissance activity of IoT devices and counter these attacks at an early stage of the attack campaign. The proposed system is designed to be efficient and lightweight to operate in severely resource-constrained environments. When tested, the implementation of the proposed system delivered an accuracy of 99%. Furthermore, the proposed system showed low false positive and false negative rates at 0.6% and 0.05%, respectively, while maintaining high efficiency and low resource consumption. |
format | Online Article Text |
id | pubmed-10256059 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102560592023-06-10 XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning Alani, Mohammed M. Damiani, Ernesto Sensors (Basel) Article IoT devices have grown in popularity in recent years. Statistics show that the number of online IoT devices exceeded 35 billion in 2022. This rapid growth in adoption made these devices an obvious target for malicious actors. Attacks such as botnets and malware injection usually start with a phase of reconnaissance to gather information about the target IoT device before exploitation. In this paper, we introduce a machine-learning-based detection system for reconnaissance attacks based on an explainable ensemble model. Our proposed system aims to detect scanning and reconnaissance activity of IoT devices and counter these attacks at an early stage of the attack campaign. The proposed system is designed to be efficient and lightweight to operate in severely resource-constrained environments. When tested, the implementation of the proposed system delivered an accuracy of 99%. Furthermore, the proposed system showed low false positive and false negative rates at 0.6% and 0.05%, respectively, while maintaining high efficiency and low resource consumption. MDPI 2023-06-02 /pmc/articles/PMC10256059/ /pubmed/37300025 http://dx.doi.org/10.3390/s23115298 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alani, Mohammed M. Damiani, Ernesto XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title | XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title_full | XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title_fullStr | XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title_full_unstemmed | XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title_short | XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning |
title_sort | xrecon: an explainbale iot reconnaissance attack detection system based on ensemble learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256059/ https://www.ncbi.nlm.nih.gov/pubmed/37300025 http://dx.doi.org/10.3390/s23115298 |
work_keys_str_mv | AT alanimohammedm xreconanexplainbaleiotreconnaissanceattackdetectionsystembasedonensemblelearning AT damianiernesto xreconanexplainbaleiotreconnaissanceattackdetectionsystembasedonensemblelearning |