Cargando…
Temperature Effects Removal from Non-Stationary Bridge–Vehicle Interaction Signals for ML Damage Detection
Bridges are vital components of transport infrastructures, and therefore, it is of utmost importance that they operate safely and reliably. This paper proposes and tests a methodology for detecting and localizing damage in bridges under both traffic and environmental variability considering non-stat...
Autores principales: | Niyozov, Sardorbek, Domaneschi, Marco, Casas, Joan R., Delgadillo, Rick M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256064/ https://www.ncbi.nlm.nih.gov/pubmed/37299918 http://dx.doi.org/10.3390/s23115187 |
Ejemplares similares
-
Structural Damage Identification of Bridges from Passing Test Vehicles
por: Yang, Yang, et al.
Publicado: (2018) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021) -
Bridge Damage Identification Using Vehicle Bump Based on Additional Virtual Masses
por: Zhang, Qingxia, et al.
Publicado: (2020) -
Damage-Detection Approach for Bridges with Multi-Vehicle Loads Using Convolutional Autoencoder
por: Lee, Kanghyeok, et al.
Publicado: (2022) -
Damage Identification Method for Medium- and Small-Span Bridges Based on Macro-Strain Data under Vehicle–Bridge Coupling
por: Zhang, Hao, et al.
Publicado: (2022)