Cargando…
A Multi-Step Fusion Network for Semantic Segmentation of High-Resolution Aerial Images
The demand for semantic segmentation of ultra-high-resolution remote sensing images is becoming increasingly stronger in various fields, posing a great challenge with concern to the accuracy requirement. Most of the existing methods process ultra-high-resolution images using downsampling or cropping...
Autores principales: | Yuan, Yirong, Cui, Jianyong, Liu, Yawen, Wu, Boyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256084/ https://www.ncbi.nlm.nih.gov/pubmed/37300050 http://dx.doi.org/10.3390/s23115323 |
Ejemplares similares
-
Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information
por: Wu, Boyang, et al.
Publicado: (2023) -
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
por: Pan, Xuran, et al.
Publicado: (2018) -
An Interactive Image Segmentation Method Based on Multi-Level Semantic Fusion
por: Zou, Ruirui, et al.
Publicado: (2023) -
MFEAFN: Multi-scale feature enhanced adaptive fusion network for image semantic segmentation
por: Li, Shusheng, et al.
Publicado: (2022) -
Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model
por: Lu, Tingyu, et al.
Publicado: (2023)