Cargando…
Attention Recurrent Neural Network-Based Severity Estimation Method for Early-Stage Fault Diagnosis in Robot Harness Cable
Cable is crucial to the control and instrumentation of machines and facilities. Therefore, early diagnosis of cable faults is the most effective approach to prevent system downtime and maximize productivity. We focused on a “soft fault state”, which is a transient state that eventually becomes a per...
Autores principales: | Kim, Heonkook, Lee, Hojin, Kim, Seongyun, Kim, Sang Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256089/ https://www.ncbi.nlm.nih.gov/pubmed/37300026 http://dx.doi.org/10.3390/s23115299 |
Ejemplares similares
-
Current Only-Based Fault Diagnosis Method for Industrial Robot Control Cables
por: Kim, Heonkook, et al.
Publicado: (2022) -
Severity Estimation for Interturn Short-Circuit and Demagnetization Faults through Self-Attention Network
por: Lee, Hojin, et al.
Publicado: (2022) -
Online and Offline Diagnosis of Motor Power Cables Based on 1D CNN and Periodic Burst Signal Injection
por: Kim, Heonkook, et al.
Publicado: (2021) -
Interturn Short Fault Diagnosis Using Magnitude and Phase of Currents in Permanent Magnet Synchronous Machines
por: Jeong, Hyeyun, et al.
Publicado: (2022) -
Development of Inspection Robots for Bridge Cables
por: Yun, Hae-Bum, et al.
Publicado: (2013)