Cargando…

Leader-Based Flocking of Multiple Swarm Robots in Underwater Environments

Considering underwater environments, this paper tackles flocking of multiple swarm robots utilizing one leader. The mission of swarm robots is to reach their goal while not colliding with a priori unknown 3D obstacles. In addition, the communication link among the robots needs to be preserved during...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Jonghoek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256109/
https://www.ncbi.nlm.nih.gov/pubmed/37300030
http://dx.doi.org/10.3390/s23115305
Descripción
Sumario:Considering underwater environments, this paper tackles flocking of multiple swarm robots utilizing one leader. The mission of swarm robots is to reach their goal while not colliding with a priori unknown 3D obstacles. In addition, the communication link among the robots needs to be preserved during the maneuver. Only the leader has sensors for localizing itself while accessing the global goal position. Every robot, except for the leader, can measure the relative position and the ID of its neighboring robots by utilizing proximity sensors such as Ultra-Short BaseLine acoustic positioning (USBL) sensors. Under the proposed flocking controls, multiple robots flock inside a 3D virtual sphere while preserving communication connectivity with the leader. If necessary, all robots rendezvous at the leader to increase connectivity among the robots. The leader herds all robots to reach the goal safely, while the network connectivity is maintained in cluttered underwater environments. To the best of our knowledge, our article is novel in developing underwater flocking controls utilizing one leader, so that a swarm of robots can safely flock to the goal in a priori unknown cluttered environments. MATLAB simulations were utilized to validate the proposed flocking controls in underwater environments with many obstacles.