Cargando…
Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features
The number of people with dementia is increasing each year, and early detection allows for early intervention and treatment. Since conventional screening methods are time-consuming and expensive, a simple and inexpensive screening is expected. We created a standardized intake questionnaire with thir...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256110/ https://www.ncbi.nlm.nih.gov/pubmed/37300072 http://dx.doi.org/10.3390/s23115346 |
_version_ | 1785057035028529152 |
---|---|
author | Igarashi, Toshiharu Umeda-Kameyama, Yumi Kojima, Taro Akishita, Masahiro Nihei, Misato |
author_facet | Igarashi, Toshiharu Umeda-Kameyama, Yumi Kojima, Taro Akishita, Masahiro Nihei, Misato |
author_sort | Igarashi, Toshiharu |
collection | PubMed |
description | The number of people with dementia is increasing each year, and early detection allows for early intervention and treatment. Since conventional screening methods are time-consuming and expensive, a simple and inexpensive screening is expected. We created a standardized intake questionnaire with thirty questions in five categories and used machine learning to categorize older adults with moderate and mild dementia and mild cognitive impairment, based on speech patterns. To evaluate the feasibility of the developed interview items and the accuracy of the classification model based on acoustic features, 29 participants (7 males and 22 females) aged 72 to 91 years were recruited with the approval of the University of Tokyo Hospital. The MMSE results showed that 12 participants had moderate dementia with MMSE scores of 20 or less, 8 participants had mild dementia with MMSE scores between 21 and 23, and 9 participants had MCI with MMSE scores between 24 and 27. As a result, Mel-spectrogram generally outperformed MFCC in terms of accuracy, precision, recall, and F1-score in all classification tasks. The multi-classification using Mel-spectrogram achieved the highest accuracy of 0.932, while the binary classification of moderate dementia and MCI group using MFCC achieved the lowest accuracy of 0.502. The FDR was generally low for all classification tasks, indicating a low rate of false positives. However, the FNR was relatively high in some cases, indicating a higher rate of false negatives. |
format | Online Article Text |
id | pubmed-10256110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102561102023-06-10 Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features Igarashi, Toshiharu Umeda-Kameyama, Yumi Kojima, Taro Akishita, Masahiro Nihei, Misato Sensors (Basel) Article The number of people with dementia is increasing each year, and early detection allows for early intervention and treatment. Since conventional screening methods are time-consuming and expensive, a simple and inexpensive screening is expected. We created a standardized intake questionnaire with thirty questions in five categories and used machine learning to categorize older adults with moderate and mild dementia and mild cognitive impairment, based on speech patterns. To evaluate the feasibility of the developed interview items and the accuracy of the classification model based on acoustic features, 29 participants (7 males and 22 females) aged 72 to 91 years were recruited with the approval of the University of Tokyo Hospital. The MMSE results showed that 12 participants had moderate dementia with MMSE scores of 20 or less, 8 participants had mild dementia with MMSE scores between 21 and 23, and 9 participants had MCI with MMSE scores between 24 and 27. As a result, Mel-spectrogram generally outperformed MFCC in terms of accuracy, precision, recall, and F1-score in all classification tasks. The multi-classification using Mel-spectrogram achieved the highest accuracy of 0.932, while the binary classification of moderate dementia and MCI group using MFCC achieved the lowest accuracy of 0.502. The FDR was generally low for all classification tasks, indicating a low rate of false positives. However, the FNR was relatively high in some cases, indicating a higher rate of false negatives. MDPI 2023-06-05 /pmc/articles/PMC10256110/ /pubmed/37300072 http://dx.doi.org/10.3390/s23115346 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Igarashi, Toshiharu Umeda-Kameyama, Yumi Kojima, Taro Akishita, Masahiro Nihei, Misato Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title | Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title_full | Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title_fullStr | Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title_full_unstemmed | Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title_short | Questionnaires for the Assessment of Cognitive Function Secondary to Intake Interviews in In-Hospital Work and Development and Evaluation of a Classification Model Using Acoustic Features |
title_sort | questionnaires for the assessment of cognitive function secondary to intake interviews in in-hospital work and development and evaluation of a classification model using acoustic features |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256110/ https://www.ncbi.nlm.nih.gov/pubmed/37300072 http://dx.doi.org/10.3390/s23115346 |
work_keys_str_mv | AT igarashitoshiharu questionnairesfortheassessmentofcognitivefunctionsecondarytointakeinterviewsininhospitalworkanddevelopmentandevaluationofaclassificationmodelusingacousticfeatures AT umedakameyamayumi questionnairesfortheassessmentofcognitivefunctionsecondarytointakeinterviewsininhospitalworkanddevelopmentandevaluationofaclassificationmodelusingacousticfeatures AT kojimataro questionnairesfortheassessmentofcognitivefunctionsecondarytointakeinterviewsininhospitalworkanddevelopmentandevaluationofaclassificationmodelusingacousticfeatures AT akishitamasahiro questionnairesfortheassessmentofcognitivefunctionsecondarytointakeinterviewsininhospitalworkanddevelopmentandevaluationofaclassificationmodelusingacousticfeatures AT niheimisato questionnairesfortheassessmentofcognitivefunctionsecondarytointakeinterviewsininhospitalworkanddevelopmentandevaluationofaclassificationmodelusingacousticfeatures |