Cargando…
Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature
Synthesis prediction is a key accelerator for the rapid design of advanced materials. However, determining synthesis variables such as the choice of precursor materials is challenging for inorganic materials because the sequence of reactions during heating is not well understood. In this work, we us...
Autores principales: | He, Tanjin, Huo, Haoyan, Bartel, Christopher J., Wang, Zheren, Cruse, Kevin, Ceder, Gerbrand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256153/ https://www.ncbi.nlm.nih.gov/pubmed/37294767 http://dx.doi.org/10.1126/sciadv.adg8180 |
Ejemplares similares
-
Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature
por: Wang, Zheren, et al.
Publicado: (2022) -
Text-mined dataset of inorganic materials synthesis recipes
por: Kononova, Olga, et al.
Publicado: (2019) -
Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities
por: Cruse, Kevin, et al.
Publicado: (2022) -
Author Correction: Text-mined dataset of inorganic materials synthesis recipes
por: Kononova, Olga, et al.
Publicado: (2019) -
Machine-Learning
Rationalization and Prediction of
Solid-State Synthesis Conditions
por: Huo, Haoyan, et al.
Publicado: (2022)