Cargando…

Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy

Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous na...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Xiqi, Tang, Songsong, Tang, Daitian, Zhou, Dewang, Li, Yangyang, Chen, Qiwei, Wan, Fangchen, Lukas, Heather, Han, Hong, Zhang, Xueji, Gao, Wei, Wu, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256165/
https://www.ncbi.nlm.nih.gov/pubmed/37294758
http://dx.doi.org/10.1126/sciadv.adh1736
_version_ 1785057043960299520
author Peng, Xiqi
Tang, Songsong
Tang, Daitian
Zhou, Dewang
Li, Yangyang
Chen, Qiwei
Wan, Fangchen
Lukas, Heather
Han, Hong
Zhang, Xueji
Gao, Wei
Wu, Song
author_facet Peng, Xiqi
Tang, Songsong
Tang, Daitian
Zhou, Dewang
Li, Yangyang
Chen, Qiwei
Wan, Fangchen
Lukas, Heather
Han, Hong
Zhang, Xueji
Gao, Wei
Wu, Song
author_sort Peng, Xiqi
collection PubMed
description Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy.
format Online
Article
Text
id pubmed-10256165
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-102561652023-06-10 Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy Peng, Xiqi Tang, Songsong Tang, Daitian Zhou, Dewang Li, Yangyang Chen, Qiwei Wan, Fangchen Lukas, Heather Han, Hong Zhang, Xueji Gao, Wei Wu, Song Sci Adv Physical and Materials Sciences Nanorobotic manipulation to access subcellular organelles remains unmet due to the challenge in achieving intracellular controlled propulsion. Intracellular organelles, such as mitochondria, are an emerging therapeutic target with selective targeting and curative efficacy. We report an autonomous nanorobot capable of active mitochondria-targeted drug delivery, prepared by facilely encapsulating mitochondriotropic doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic imidazolate framework-67 (ZIF-67) nanoparticles. The catalytic ZIF-67 body can decompose bioavailable hydrogen peroxide overexpressed inside tumor cells to generate effective intracellular mitochondriotropic movement in the presence of TPP cation. This nanorobot-enhanced targeted drug delivery induces mitochondria-mediated apoptosis and mitochondrial dysregulation to improve the in vitro anticancer effect and suppression of cancer cell metastasis, further verified by in vivo evaluations in the subcutaneous tumor model and orthotopic breast tumor model. This nanorobot unlocks a fresh field of nanorobot operation with intracellular organelle access, thereby introducing the next generation of robotic medical devices with organelle-level resolution for precision therapy. American Association for the Advancement of Science 2023-06-09 /pmc/articles/PMC10256165/ /pubmed/37294758 http://dx.doi.org/10.1126/sciadv.adh1736 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Peng, Xiqi
Tang, Songsong
Tang, Daitian
Zhou, Dewang
Li, Yangyang
Chen, Qiwei
Wan, Fangchen
Lukas, Heather
Han, Hong
Zhang, Xueji
Gao, Wei
Wu, Song
Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title_full Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title_fullStr Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title_full_unstemmed Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title_short Autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
title_sort autonomous metal-organic framework nanorobots for active mitochondria-targeted cancer therapy
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256165/
https://www.ncbi.nlm.nih.gov/pubmed/37294758
http://dx.doi.org/10.1126/sciadv.adh1736
work_keys_str_mv AT pengxiqi autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT tangsongsong autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT tangdaitian autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT zhoudewang autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT liyangyang autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT chenqiwei autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT wanfangchen autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT lukasheather autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT hanhong autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT zhangxueji autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT gaowei autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy
AT wusong autonomousmetalorganicframeworknanorobotsforactivemitochondriatargetedcancertherapy