Cargando…

Relation extraction: advancements through deep learning and entity-related features

Capturing semantics and structure surrounding the target entity pair is crucial for relation extraction. The task is challenging due to the limited semantic elements and structural features of the target entity pair within a sentence. To tackle this problem, this paper introduces an approach that fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Youwen, Yuan, Xiangbo, Yuan, Ye, Deng, Shaoxiong, Quan, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256580/
https://www.ncbi.nlm.nih.gov/pubmed/37325108
http://dx.doi.org/10.1007/s13278-023-01095-8
Descripción
Sumario:Capturing semantics and structure surrounding the target entity pair is crucial for relation extraction. The task is challenging due to the limited semantic elements and structural features of the target entity pair within a sentence. To tackle this problem, this paper introduces an approach that fuses entity-related features under convolutional neural networks and graph convolution neural networks. Our approach combines the unit features of the target entity pair to generate corresponding fusion features and applies the deep learning framework to extract high-order abstract features for relation extraction. Experimental results from three public datasets (ACE05 English, ACE05 Chinese, and SanWen) indicate that the proposed approach achieves F1-scores of 77.70%, 90.12%, and 68.84%, respectively, highlighting its effectiveness and robustness. This paper provides a comprehensive description of the approach and experimental results.