Cargando…
Lorentz group equivariant autoencoders
There has been significant work recently in developing machine learning (ML) models in high energy physics (HEP) for tasks such as classification, simulation, and anomaly detection. Often these models are adapted from those designed for datasets in computer vision or natural language processing, whi...
Autores principales: | Hao, Zichun, Kansal, Raghav, Duarte, Javier, Chernyavskaya, Nadezda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256669/ https://www.ncbi.nlm.nih.gov/pubmed/37303461 http://dx.doi.org/10.1140/epjc/s10052-023-11633-5 |
Ejemplares similares
-
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022) -
Equivariant analytic localization of group representations
por: Smithies, Laura
Publicado: (2001) -
Hamiltonian group actions and equivariant cohomology
por: Dwivedi, Shubham, et al.
Publicado: (2019)