Cargando…
A simulation study on missing data imputation for dichotomous variables using statistical and machine learning methods
The problem of missing data, particularly for dichotomous variables, is a common issue in medical research. However, few studies have focused on the imputation methods of dichotomous data and their performance, as well as the applicability of these imputation methods and the factors that may affect...
Autores principales: | Ge, Yingfeng, Li, Zhiwei, Zhang, Jinxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256703/ https://www.ncbi.nlm.nih.gov/pubmed/37296269 http://dx.doi.org/10.1038/s41598-023-36509-2 |
Ejemplares similares
-
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Graph Machine Learning
for Improved Imputation of
Missing Tropospheric Ozone Data
por: Betancourt, Clara, et al.
Publicado: (2023) -
Imputation by feature importance (IBFI): A methodology to envelop machine learning method for imputing missing patterns in time series data
por: Mir, Adil Aslam, et al.
Publicado: (2022) -
Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study
por: Floden, Lysbeth, et al.
Publicado: (2019) -
Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study
por: Sperrin, Matthew, et al.
Publicado: (2020)