Cargando…
Lifelong nnU-Net: a framework for standardized medical continual learning
As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to co...
Autores principales: | González, Camila, Ranem, Amin, Pinto dos Santos, Daniel, Othman, Ahmed, Mukhopadhyay, Anirban |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256748/ https://www.ncbi.nlm.nih.gov/pubmed/37296233 http://dx.doi.org/10.1038/s41598-023-34484-2 |
Ejemplares similares
-
A Fusion Biopsy Framework for Prostate Cancer Based on Deformable Superellipses and nnU-Net
por: Altini, Nicola, et al.
Publicado: (2022) -
An Algorithm for Automatic Rib Fracture Recognition Combined with nnU-Net and DenseNet
por: Zhang, Junzhong, et al.
Publicado: (2022) -
Three-Dimensional Semantic Segmentation of Pituitary Adenomas Based on the Deep Learning Framework-nnU-Net: A Clinical Perspective
por: Shu, Xujun, et al.
Publicado: (2021) -
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
por: Hu, Yifan, et al.
Publicado: (2023) -
Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models
por: Ferrante, Matteo, et al.
Publicado: (2022)