Cargando…
A traffic light control method based on multi-agent deep reinforcement learning algorithm
Intelligent traffic light control (ITLC) algorithms are very efficient for relieving traffic congestion. Recently, many decentralized multi-agent traffic light control algorithms are proposed. These researches mainly focus on improving reinforcement learning method and coordination method. But, as a...
Autores principales: | Liu, Dongjiang, Li, Leixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256792/ https://www.ncbi.nlm.nih.gov/pubmed/37296308 http://dx.doi.org/10.1038/s41598-023-36606-2 |
Ejemplares similares
-
An Edge Based Multi-Agent Auto Communication Method for Traffic Light Control
por: Wu, Qiang, et al.
Publicado: (2020) -
Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles
por: Mushtaq, Anum, et al.
Publicado: (2023) -
Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning
por: Gao, Xin, et al.
Publicado: (2022) -
A Novel Method for Improved Network Traffic Prediction Using Enhanced Deep Reinforcement Learning Algorithm
por: Balamurugan, Nagaiah Mohanan, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
por: Tan, Jiyuan, et al.
Publicado: (2022)