Cargando…
The synergic approach between machine learning, chemometrics, and NIR hyperspectral imagery for a real-time, reliable, and accurate prediction of mass loss in cement samples
Alternative and non-destructive analytical methods that predict analyte concentration accurately and immediately in a specific matrix are becoming vital in the analytical chemistry domain. Here, a new innovative and rapid method of predicting mass loss of cement samples based on a combination of Mac...
Autores principales: | Diane, Abderrahim, Saffaj, Taoufiq, Ihssane, Bouchaib, Rabie, Reda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256915/ https://www.ncbi.nlm.nih.gov/pubmed/37305509 http://dx.doi.org/10.1016/j.heliyon.2023.e15898 |
Ejemplares similares
-
Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L.
por: Fadil, Mouhcine, et al.
Publicado: (2016) -
PET and PVC Separation with Hyperspectral Imagery
por: Moroni, Monica, et al.
Publicado: (2015) -
Identification of Magnesium Oxychloride Cement Biomaterial Heterogeneity using Raman Chemical Mapping and NIR Hyperspectral Chemical Imaging
por: Dorrepaal, Ronan M., et al.
Publicado: (2018) -
QSAR modeling and molecular docking studies of 2-oxo-1, 2-dihydroquinoline-4- carboxylic acid derivatives as p-glycoprotein inhibitors for combating cancer multidrug resistance()
por: Lahyaoui, M., et al.
Publicado: (2023) -
Application of hyperspectral imaging and chemometrics for variety classification of maize seeds
por: Zhao, Yiying, et al.
Publicado: (2018)