Cargando…
Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index
BACKGROUND: Determining the DNA fragmentation index (DFI) by the sperm chromatin dispersion (SCD) test involves manual counting of stained sperms with halo and no halo. AIMS: The aim of this study is to build a robust artificial intelligence-based solution to predict the DFI. SETTINGS AND DESIGN: Th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256941/ https://www.ncbi.nlm.nih.gov/pubmed/37305775 http://dx.doi.org/10.4103/jhrs.jhrs_4_23 |
_version_ | 1785057212872261632 |
---|---|
author | Kumar, Roopini Sathiasai Sharma, Swapnil Halder, Arunima Gupta, Vipin |
author_facet | Kumar, Roopini Sathiasai Sharma, Swapnil Halder, Arunima Gupta, Vipin |
author_sort | Kumar, Roopini Sathiasai |
collection | PubMed |
description | BACKGROUND: Determining the DNA fragmentation index (DFI) by the sperm chromatin dispersion (SCD) test involves manual counting of stained sperms with halo and no halo. AIMS: The aim of this study is to build a robust artificial intelligence-based solution to predict the DFI. SETTINGS AND DESIGN: This is a retrospective experimental study conducted in a secondary in vitro fertilisation setup. MATERIALS AND METHODS: We obtained 24,415 images from 30 patients after the SCD test using a phase-contrast microscope. We classified the dataset into two, binary (halo/no halo) and multiclass (big/medium/small halo/degraded (DEG)/dust). Our approach consists of a training and prediction phase. The 30 patients’ images were divided into training (24) and prediction (6) sets. A pre-processing method M was developed to automatically segment the images to detect sperm-like regions and was annotated by three embryologists. STATISTICAL ANALYSIS USED: To interpret the findings, the precision-recall curve and F1 score were utilised. RESULTS: Binary and multiclass datasets containing 8887 and 15,528 cropped sperm image regions showed an accuracy of 80.15% versus 75.25%. A precision-recall curve was determined and the binary and multiclass datasets obtained an F1 score of 0.81 versus 0.72. A confusion matrix was applied for predicted and actuals for the multiclass approach where small halo and medium halo confusion were found to be highest. CONCLUSION: Our proposed machine learning model can standardise and aid in arriving at accurate results without using expensive software. It provides accurate information about healthy and DEG sperms in a given sample, thereby attaining better clinical outcomes. The binary approach performed better with our model than the multiclass approach. However, the multiclass approach can highlight the distribution of fragmented and non-fragmented sperms. |
format | Online Article Text |
id | pubmed-10256941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-102569412023-06-11 Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index Kumar, Roopini Sathiasai Sharma, Swapnil Halder, Arunima Gupta, Vipin J Hum Reprod Sci Original Article BACKGROUND: Determining the DNA fragmentation index (DFI) by the sperm chromatin dispersion (SCD) test involves manual counting of stained sperms with halo and no halo. AIMS: The aim of this study is to build a robust artificial intelligence-based solution to predict the DFI. SETTINGS AND DESIGN: This is a retrospective experimental study conducted in a secondary in vitro fertilisation setup. MATERIALS AND METHODS: We obtained 24,415 images from 30 patients after the SCD test using a phase-contrast microscope. We classified the dataset into two, binary (halo/no halo) and multiclass (big/medium/small halo/degraded (DEG)/dust). Our approach consists of a training and prediction phase. The 30 patients’ images were divided into training (24) and prediction (6) sets. A pre-processing method M was developed to automatically segment the images to detect sperm-like regions and was annotated by three embryologists. STATISTICAL ANALYSIS USED: To interpret the findings, the precision-recall curve and F1 score were utilised. RESULTS: Binary and multiclass datasets containing 8887 and 15,528 cropped sperm image regions showed an accuracy of 80.15% versus 75.25%. A precision-recall curve was determined and the binary and multiclass datasets obtained an F1 score of 0.81 versus 0.72. A confusion matrix was applied for predicted and actuals for the multiclass approach where small halo and medium halo confusion were found to be highest. CONCLUSION: Our proposed machine learning model can standardise and aid in arriving at accurate results without using expensive software. It provides accurate information about healthy and DEG sperms in a given sample, thereby attaining better clinical outcomes. The binary approach performed better with our model than the multiclass approach. However, the multiclass approach can highlight the distribution of fragmented and non-fragmented sperms. Medknow Publications & Media Pvt Ltd 2023 /pmc/articles/PMC10256941/ /pubmed/37305775 http://dx.doi.org/10.4103/jhrs.jhrs_4_23 Text en Copyright: © 2023 Journal of Human Reproductive Sciences https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Kumar, Roopini Sathiasai Sharma, Swapnil Halder, Arunima Gupta, Vipin Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title | Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title_full | Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title_fullStr | Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title_full_unstemmed | Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title_short | Deep Learning-Based Robust Automated System for Predicting Human Sperm DNA Fragmentation Index |
title_sort | deep learning-based robust automated system for predicting human sperm dna fragmentation index |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256941/ https://www.ncbi.nlm.nih.gov/pubmed/37305775 http://dx.doi.org/10.4103/jhrs.jhrs_4_23 |
work_keys_str_mv | AT kumarroopinisathiasai deeplearningbasedrobustautomatedsystemforpredictinghumanspermdnafragmentationindex AT sharmaswapnil deeplearningbasedrobustautomatedsystemforpredictinghumanspermdnafragmentationindex AT halderarunima deeplearningbasedrobustautomatedsystemforpredictinghumanspermdnafragmentationindex AT guptavipin deeplearningbasedrobustautomatedsystemforpredictinghumanspermdnafragmentationindex |