Cargando…
The Performance Evaluation of The Random Forest Algorithm for A Gene Selection in Identifying Genes Associated with Resectable Pancreatic Cancer in Microarray Dataset: A Retrospective Study
OBJECTIVE: In microarray datasets, hundreds and thousands of genes are measured in a small number of samples, and sometimes due to problems that occur during the experiment, the expression value of some genes is recorded as missing. It is a difficult task to determine the genes that cause disease or...
Autores principales: | Rabiei, Niloofar, Soltanian, Ali Reza, Farhadian, Maryam, Bahreini, Fatemeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royan Institute
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257059/ https://www.ncbi.nlm.nih.gov/pubmed/37300296 http://dx.doi.org/10.22074/CELLJ.2023.1971852.1156 |
Ejemplares similares
-
Identification of A Gene Set Associated with Colorectal Cancer
in Microarray Data Using The Entropy Method
por: Bahreini, Fatemeh, et al.
Publicado: (2019) -
Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm
por: Mohammdian-khoshnoud, Maryam, et al.
Publicado: (2022) -
GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets
por: Mpindi, John Patrick, et al.
Publicado: (2011) -
Correction: GTI: A Novel Algorithm for Identifying Outlier Gene Expression Profiles from Integrated Microarray Datasets
por: Mpindi, John Patrick, et al.
Publicado: (2011) -
A novel gene selection algorithm for cancer classification using microarray datasets
por: Alanni, Russul, et al.
Publicado: (2019)