Cargando…
Retrosynthetic planning with experience-guided Monte Carlo tree search
In retrosynthetic planning, the huge number of possible routes to synthesize a complex molecule using simple building blocks leads to a combinatorial explosion of possibilities. Even experienced chemists often have difficulty to select the most promising transformations. The current approaches rely...
Autores principales: | Hong, Siqi, Zhuo, Hankz Hankui, Jin, Kebing, Shao, Guang, Zhou, Zhanwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257190/ https://www.ncbi.nlm.nih.gov/pubmed/37301940 http://dx.doi.org/10.1038/s42004-023-00911-8 |
Ejemplares similares
-
Action Generative Networks Planning for Deformable Object with Raw Observations
por: Sheng, Ziqi, et al.
Publicado: (2021) -
Learning Retrosynthetic Planning through Simulated
Experience
por: Schreck, John S., et al.
Publicado: (2019) -
From bandits to monte-carlo tree search: the optimistic principle applied to optimization and planning
por: Munos, Rémi
Publicado: (2014) -
A self-learning Monte Carlo tree search algorithm for robot path planning
por: Li, Wei, et al.
Publicado: (2023) -
SynRoute: A Retrosynthetic
Planning Software
por: Latendresse, Mario, et al.
Publicado: (2023)