Cargando…

Serratia marcescens in the intestine of housefly larvae inhibits host growth by interfering with gut microbiota

BACKGROUND: The structure of gut microbiota is highly complex. Insects have ubiquitous associations with intestinal symbiotic bacteria, which play essential roles. Thus, understanding how changes in the abundance of a single bacterium interfere with bacterial interactions in the insect’s gut is impo...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ying, Wang, Shumin, Zhang, Kexin, Yin, Yansong, Zhang, Xinyu, Zhang, Qian, Kong, Xinxin, Tang, Luyao, Zhang, Ruiling, Zhang, Zhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257315/
https://www.ncbi.nlm.nih.gov/pubmed/37301969
http://dx.doi.org/10.1186/s13071-023-05781-6
Descripción
Sumario:BACKGROUND: The structure of gut microbiota is highly complex. Insects have ubiquitous associations with intestinal symbiotic bacteria, which play essential roles. Thus, understanding how changes in the abundance of a single bacterium interfere with bacterial interactions in the insect’s gut is important. METHODS: Here, we analyzed the effects of Serratia marcescens on the growth and development of housefly larvae using phage technology. We used 16S rRNA gene sequencing technology to explore dynamic diversity and variation in gut bacterial communities and performed plate confrontation assays to study the interaction between S. marcescens and intestinal microorganisms. Furthermore, we performed phenoloxidase activity assay, crawling assay, and trypan blue staining to explore the negative effects of S. marcescens on housefly larvae’s humoral immunity, motility, and intestinal organization. RESULTS: The growth and development of housefly larvae were inhibited after feeding on S. marcescens, and their intestinal bacterial composition changed with increasing abundance of Providencia and decreasing abundance of Enterobacter and Klebsiella. Meanwhile, the depletion of S. marcescens by phages promoted the reproduction of beneficial bacteria. CONCLUSIONS: In our study, using phage as a tool to regulate the abundance of S. marcescens, we highlighted the mechanism by which S. marcescens inhibits the growth and development of housefly larvae and illustrated the importance of intestinal flora for larval development. Furthermore, by studying the dynamic diversity and variation in gut bacterial communities, we improved our understanding of the possible relationship between the gut microbiome and housefly larvae when houseflies are invaded by exogenous pathogenic bacteria. GRAPHICAL ABSTRACT: SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-023-05781-6.