Cargando…
Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called b...
Autores principales: | Hu, Fengling, Chen, Andrew A., Horng, Hannah, Bashyam, Vishnu, Davatzikos, Christos, Alexander-Bloch, Aaron, Li, Mingyao, Shou, Haochang, Satterthwaite, Theodore D., Yu, Meichen, Shinohara, Russell T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257347/ https://www.ncbi.nlm.nih.gov/pubmed/37084926 http://dx.doi.org/10.1016/j.neuroimage.2023.120125 |
Ejemplares similares
-
DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data
por: Hu, Fengling, et al.
Publicado: (2023) -
Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects
por: Horng, Hannah, et al.
Publicado: (2022) -
Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect
por: Borisov, Nicolas, et al.
Publicado: (2022) -
Harmonic quasiconformal mappings and hyperbolic type metrics
por: Todorčević, Vesna
Publicado: (2019) -
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data()
por: Beer, Joanne C., et al.
Publicado: (2020)