Cargando…
Competition on robust deep learning
This perspective paper proposes a new adversarial training method based on large-scale pre-trained models to achieve state-of-the-art adversarial robustness on ImageNet.
Autores principales: | Dong, Yinpeng, Liu, Chang, Xiang, Wenzhao, Su, Hang, Zhu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257479/ https://www.ncbi.nlm.nih.gov/pubmed/37304460 http://dx.doi.org/10.1093/nsr/nwad087 |
Ejemplares similares
-
Laboratory earthquake forecasting: A machine learning competition
por: Johnson, Paul A., et al.
Publicado: (2021) -
CMW-Net: an adaptive robust algorithm for sample selection and label correction
por: Shu, Jun, et al.
Publicado: (2023) -
Modern deep learning in bioinformatics
por: Li, Haoyang, et al.
Publicado: (2020) -
Deep learning and alternative learning strategies for retrospective real-world clinical data
por: Chen, David, et al.
Publicado: (2019) -
Deep learning in holography and coherent imaging
por: Rivenson, Yair, et al.
Publicado: (2019)