Cargando…

Prediction of CO2 emissions in China by generalized regression neural network optimized with fruit fly optimization algorithm

As global warming becomes more prominent, the need to reduce carbon emissions to achieve China's carbon peak target is increasing. It is imperative to seek effective methods to predict carbon emissions and propose targeted emission reduction measures. In this paper, a comprehensive model integr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yue, Hui, Bu, Liangtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257487/
https://www.ncbi.nlm.nih.gov/pubmed/37301812
http://dx.doi.org/10.1007/s11356-023-27888-0
Descripción
Sumario:As global warming becomes more prominent, the need to reduce carbon emissions to achieve China's carbon peak target is increasing. It is imperative to seek effective methods to predict carbon emissions and propose targeted emission reduction measures. In this paper, a comprehensive model integrating grey relational analysis (GRA), generalized regression neural network (GRNN) and fruit fly optimization algorithm (FOA) is constructed with carbon emission prediction as the research objective. Firstly, GRA is used for feature selection to find out the factors that have a strong influence on carbon emissions. Secondly, the parameter of GRNN is optimized using FOA algorithm to improve the prediction accuracy. The results show that (1) fossil energy consumption, population, urbanization rate and GDP are important factors affecting carbon emissions; (2) FOA-GRNN outperforms GRNN and back propagation neural network (BPNN), verifying the effectiveness of FOA-GRNN model for CO2 emission prediction. Finally, by analyzing the key influencing factors and combining scenario analysis with forecasting algorithms, the carbon emission trends in China for 2020-2035 are forecasted. The results can provide guidance for policy makers to set reasonable carbon emission reduction targets and adopt corresponding energy saving and emission reduction measures.