Cargando…
Machine learning algorithms for identifying predictive variables of mortality risk following dementia diagnosis: a longitudinal cohort study
Machine learning (ML) could have advantages over traditional statistical models in identifying risk factors. Using ML algorithms, our objective was to identify the most important variables associated with mortality after dementia diagnosis in the Swedish Registry for Cognitive/Dementia Disorders (Sv...
Autores principales: | Mostafaei, Shayan, Hoang, Minh Tuan, Jurado, Pol Grau, Xu, Hong, Zacarias-Pons, Lluis, Eriksdotter, Maria, Chatterjee, Saikat, Garcia-Ptacek, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257644/ https://www.ncbi.nlm.nih.gov/pubmed/37301891 http://dx.doi.org/10.1038/s41598-023-36362-3 |
Ejemplares similares
-
Psychiatric Disorders Before and After Dementia Diagnosis
por: Mo, Minjia, et al.
Publicado: (2023) -
Satisfaction with Stroke Care Among Patients with Alzheimer’s and Other Dementias: A Swedish Register-Based Study
por: Hoang, Minh Tuan, et al.
Publicado: (2021) -
Costs of Inpatient Rehabilitation for Ischemic Stroke in Patients with Dementia: A Cohort Swedish Register-Based Study
por: Hoang, Minh Tuan, et al.
Publicado: (2020) -
Controlling for selective dropout in longitudinal dementia data: Application to the SveDem registry
por: Handels, Ron, et al.
Publicado: (2020) -
The Impact of Educational Attainment and Income on Long-Term Care for Persons with Alzheimer’s Disease and Other Dementias: A Swedish Nationwide Study
por: Hoang, Minh Tuan, et al.
Publicado: (2023)