Cargando…
Using machine learning to develop a clinical prediction model for SSRI-associated bleeding: a feasibility study
INTRODUCTION: Adverse drug events (ADEs) are associated with poor outcomes and increased costs but may be prevented with prediction tools. With the National Institute of Health All of Us (AoU) database, we employed machine learning (ML) to predict selective serotonin reuptake inhibitor (SSRI)-associ...
Autores principales: | Goyal, Jatin, Ng, Ding Quan, Zhang, Kevin, Chan, Alexandre, Lee, Joyce, Zheng, Kai, Hurley-Kim, Keri, Nguyen, Lee, He, Lu, Nguyen, Megan, McBane, Sarah, Li, Wei, Cadiz, Christine Luu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257821/ https://www.ncbi.nlm.nih.gov/pubmed/37301967 http://dx.doi.org/10.1186/s12911-023-02206-3 |
Ejemplares similares
-
24. An analysis of the National Institutes of Health All of Us Research Database: Sociodemographic Disparities Among Patients Who Received Vaccinations
por: Ng, Ding Quan, et al.
Publicado: (2021) -
Pharmacist-Managed Refill Service Impacts on Clinician Workload and Medication Interventions in a Federally Qualified Health Center
por: Hurley-Kim, Keri, et al.
Publicado: (2023) -
The SSRI Clinic: Improving SSRI Prescribing Safety in Outpatient CAMHS Clinic
por: Morgan, Tammy, et al.
Publicado: (2022) -
Health Disparities in Pharmacy Practice Within the Community: Let's Brainstorm for Solutions
por: Hurley-Kim, Keri, et al.
Publicado: (2022) -
SSRI Facilitated Crack Dancing
por: Doobay, Ravi, et al.
Publicado: (2017)