Cargando…
ScInfoVAE: interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization
Single-cell RNA-sequencing (scRNA-seq) data can serve as a good indicator of cell-to-cell heterogeneity and can aid in the study of cell growth by identifying cell types. Recently, advances in Variational Autoencoder (VAE) have demonstrated their ability to learn robust feature representations for s...
Autores principales: | Pan, Weiquan, Long, Faning, Pan, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257850/ https://www.ncbi.nlm.nih.gov/pubmed/37301826 http://dx.doi.org/10.1186/s13040-023-00333-1 |
Ejemplares similares
-
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
por: Cao, Shichen, et al.
Publicado: (2022) -
PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction
por: Dean, Scott N., et al.
Publicado: (2021) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder
por: Samanta, Soumitra, et al.
Publicado: (2020) -
bmVAE: a variational autoencoder method for clustering single-cell mutation data
por: Yan, Jiaqian, et al.
Publicado: (2022)