Cargando…
Self-organizing maps on “what-where” codes towards fully unsupervised classification
Interest in unsupervised learning architectures has been rising. Besides being biologically unnatural, it is costly to depend on large labeled data sets to get a well-performing classification system. Therefore, both the deep learning community and the more biologically-inspired models community hav...
Autores principales: | Sa-Couto, Luis, Wichert, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258173/ https://www.ncbi.nlm.nih.gov/pubmed/37188974 http://dx.doi.org/10.1007/s00422-023-00963-y |
Ejemplares similares
-
Self-Organizing Neural Networks Based on OxRAM Devices under a Fully Unsupervised Training Scheme
por: Pedró, Marta, et al.
Publicado: (2019) -
What’s in a Gist? Towards an Unsupervised Gist Representation for Few-Shot Large Document Classification
por: Mar, Jaron, et al.
Publicado: (2020) -
Predicting drug resistance related to ABC transporters using unsupervised Consensus Self-Organizing Maps
por: Estrada-Tejedor, Roger, et al.
Publicado: (2018) -
Improved Self-Organizing Map-Based Unsupervised Learning Algorithm for Sitting Posture Recognition System
por: Cai, Wenyu, et al.
Publicado: (2021) -
FASTER: an unsupervised fully automated sleep staging method for mice
por: Sunagawa, Genshiro A, et al.
Publicado: (2013)