Cargando…

Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma

Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in...

Descripción completa

Detalles Bibliográficos
Autores principales: Rauch, P., Stefanits, H., Aichholzer, M., Serra, C., Vorhauer, D., Wagner, H., Böhm, P., Hartl, S., Manakov, I., Sonnberger, M., Buckwar, E., Ruiz-Navarro, F., Heil, K., Glöckel, M., Oberndorfer, J., Spiegl-Kreinecker, S., Aufschnaiter-Hiessböck, K., Weis, S., Leibetseder, A., Thomae, W., Hauser, T., Auer, C., Katletz, S., Gruber, A., Gmeiner, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258197/
https://www.ncbi.nlm.nih.gov/pubmed/37302994
http://dx.doi.org/10.1038/s41598-023-36298-8
_version_ 1785057428683882496
author Rauch, P.
Stefanits, H.
Aichholzer, M.
Serra, C.
Vorhauer, D.
Wagner, H.
Böhm, P.
Hartl, S.
Manakov, I.
Sonnberger, M.
Buckwar, E.
Ruiz-Navarro, F.
Heil, K.
Glöckel, M.
Oberndorfer, J.
Spiegl-Kreinecker, S.
Aufschnaiter-Hiessböck, K.
Weis, S.
Leibetseder, A.
Thomae, W.
Hauser, T.
Auer, C.
Katletz, S.
Gruber, A.
Gmeiner, M.
author_facet Rauch, P.
Stefanits, H.
Aichholzer, M.
Serra, C.
Vorhauer, D.
Wagner, H.
Böhm, P.
Hartl, S.
Manakov, I.
Sonnberger, M.
Buckwar, E.
Ruiz-Navarro, F.
Heil, K.
Glöckel, M.
Oberndorfer, J.
Spiegl-Kreinecker, S.
Aufschnaiter-Hiessböck, K.
Weis, S.
Leibetseder, A.
Thomae, W.
Hauser, T.
Auer, C.
Katletz, S.
Gruber, A.
Gmeiner, M.
author_sort Rauch, P.
collection PubMed
description Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, we retrospectively included 349 LGG patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79–0.86) for the training cohort over 10 years and 0.74 (Cl 0.64–0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73–0.82) for training and 0.67 (Cl 0.57–0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate.
format Online
Article
Text
id pubmed-10258197
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102581972023-06-13 Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma Rauch, P. Stefanits, H. Aichholzer, M. Serra, C. Vorhauer, D. Wagner, H. Böhm, P. Hartl, S. Manakov, I. Sonnberger, M. Buckwar, E. Ruiz-Navarro, F. Heil, K. Glöckel, M. Oberndorfer, J. Spiegl-Kreinecker, S. Aufschnaiter-Hiessböck, K. Weis, S. Leibetseder, A. Thomae, W. Hauser, T. Auer, C. Katletz, S. Gruber, A. Gmeiner, M. Sci Rep Article Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, we retrospectively included 349 LGG patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79–0.86) for the training cohort over 10 years and 0.74 (Cl 0.64–0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73–0.82) for training and 0.67 (Cl 0.57–0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate. Nature Publishing Group UK 2023-06-11 /pmc/articles/PMC10258197/ /pubmed/37302994 http://dx.doi.org/10.1038/s41598-023-36298-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Rauch, P.
Stefanits, H.
Aichholzer, M.
Serra, C.
Vorhauer, D.
Wagner, H.
Böhm, P.
Hartl, S.
Manakov, I.
Sonnberger, M.
Buckwar, E.
Ruiz-Navarro, F.
Heil, K.
Glöckel, M.
Oberndorfer, J.
Spiegl-Kreinecker, S.
Aufschnaiter-Hiessböck, K.
Weis, S.
Leibetseder, A.
Thomae, W.
Hauser, T.
Auer, C.
Katletz, S.
Gruber, A.
Gmeiner, M.
Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title_full Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title_fullStr Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title_full_unstemmed Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title_short Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
title_sort deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258197/
https://www.ncbi.nlm.nih.gov/pubmed/37302994
http://dx.doi.org/10.1038/s41598-023-36298-8
work_keys_str_mv AT rauchp deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT stefanitsh deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT aichholzerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT serrac deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT vorhauerd deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT wagnerh deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT bohmp deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT hartls deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT manakovi deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT sonnbergerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT buckware deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT ruiznavarrof deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT heilk deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT glockelm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT oberndorferj deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT spieglkreineckers deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT aufschnaiterhiessbockk deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT weiss deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT leibetsedera deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT thomaew deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT hausert deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT auerc deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT katletzs deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT grubera deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma
AT gmeinerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma