Cargando…
Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma
Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258197/ https://www.ncbi.nlm.nih.gov/pubmed/37302994 http://dx.doi.org/10.1038/s41598-023-36298-8 |
_version_ | 1785057428683882496 |
---|---|
author | Rauch, P. Stefanits, H. Aichholzer, M. Serra, C. Vorhauer, D. Wagner, H. Böhm, P. Hartl, S. Manakov, I. Sonnberger, M. Buckwar, E. Ruiz-Navarro, F. Heil, K. Glöckel, M. Oberndorfer, J. Spiegl-Kreinecker, S. Aufschnaiter-Hiessböck, K. Weis, S. Leibetseder, A. Thomae, W. Hauser, T. Auer, C. Katletz, S. Gruber, A. Gmeiner, M. |
author_facet | Rauch, P. Stefanits, H. Aichholzer, M. Serra, C. Vorhauer, D. Wagner, H. Böhm, P. Hartl, S. Manakov, I. Sonnberger, M. Buckwar, E. Ruiz-Navarro, F. Heil, K. Glöckel, M. Oberndorfer, J. Spiegl-Kreinecker, S. Aufschnaiter-Hiessböck, K. Weis, S. Leibetseder, A. Thomae, W. Hauser, T. Auer, C. Katletz, S. Gruber, A. Gmeiner, M. |
author_sort | Rauch, P. |
collection | PubMed |
description | Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, we retrospectively included 349 LGG patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79–0.86) for the training cohort over 10 years and 0.74 (Cl 0.64–0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73–0.82) for training and 0.67 (Cl 0.57–0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate. |
format | Online Article Text |
id | pubmed-10258197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102581972023-06-13 Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma Rauch, P. Stefanits, H. Aichholzer, M. Serra, C. Vorhauer, D. Wagner, H. Böhm, P. Hartl, S. Manakov, I. Sonnberger, M. Buckwar, E. Ruiz-Navarro, F. Heil, K. Glöckel, M. Oberndorfer, J. Spiegl-Kreinecker, S. Aufschnaiter-Hiessböck, K. Weis, S. Leibetseder, A. Thomae, W. Hauser, T. Auer, C. Katletz, S. Gruber, A. Gmeiner, M. Sci Rep Article Determining the optimal course of treatment for low grade glioma (LGG) patients is challenging and frequently reliant on subjective judgment and limited scientific evidence. Our objective was to develop a comprehensive deep learning assisted radiomics model for assessing not only overall survival in LGG, but also the likelihood of future malignancy and glioma growth velocity. Thus, we retrospectively included 349 LGG patients to develop a prediction model using clinical, anatomical, and preoperative MRI data. Before performing radiomics analysis, a U2-model for glioma segmentation was utilized to prevent bias, yielding a mean whole tumor Dice score of 0.837. Overall survival and time to malignancy were estimated using Cox proportional hazard models. In a postoperative model, we derived a C-index of 0.82 (CI 0.79–0.86) for the training cohort over 10 years and 0.74 (Cl 0.64–0.84) for the test cohort. Preoperative models showed a C-index of 0.77 (Cl 0.73–0.82) for training and 0.67 (Cl 0.57–0.80) test sets. Our findings suggest that we can reliably predict the survival of a heterogeneous population of glioma patients in both preoperative and postoperative scenarios. Further, we demonstrate the utility of radiomics in predicting biological tumor activity, such as the time to malignancy and the LGG growth rate. Nature Publishing Group UK 2023-06-11 /pmc/articles/PMC10258197/ /pubmed/37302994 http://dx.doi.org/10.1038/s41598-023-36298-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Rauch, P. Stefanits, H. Aichholzer, M. Serra, C. Vorhauer, D. Wagner, H. Böhm, P. Hartl, S. Manakov, I. Sonnberger, M. Buckwar, E. Ruiz-Navarro, F. Heil, K. Glöckel, M. Oberndorfer, J. Spiegl-Kreinecker, S. Aufschnaiter-Hiessböck, K. Weis, S. Leibetseder, A. Thomae, W. Hauser, T. Auer, C. Katletz, S. Gruber, A. Gmeiner, M. Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title | Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title_full | Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title_fullStr | Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title_full_unstemmed | Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title_short | Deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
title_sort | deep learning-assisted radiomics facilitates multimodal prognostication for personalized treatment strategies in low-grade glioma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258197/ https://www.ncbi.nlm.nih.gov/pubmed/37302994 http://dx.doi.org/10.1038/s41598-023-36298-8 |
work_keys_str_mv | AT rauchp deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT stefanitsh deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT aichholzerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT serrac deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT vorhauerd deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT wagnerh deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT bohmp deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT hartls deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT manakovi deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT sonnbergerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT buckware deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT ruiznavarrof deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT heilk deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT glockelm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT oberndorferj deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT spieglkreineckers deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT aufschnaiterhiessbockk deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT weiss deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT leibetsedera deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT thomaew deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT hausert deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT auerc deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT katletzs deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT grubera deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma AT gmeinerm deeplearningassistedradiomicsfacilitatesmultimodalprognosticationforpersonalizedtreatmentstrategiesinlowgradeglioma |