Cargando…
Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries
Therapeutic antibodies are an important and rapidly growing drug modality. However, the design and discovery of early-stage antibody therapeutics remain a time and cost-intensive endeavor. Here we present an end-to-end Bayesian, language model-based method for designing large and diverse libraries o...
Autores principales: | Li, Lin, Gupta, Esther, Spaeth, John, Shing, Leslie, Jaimes, Rafael, Engelhart, Emily, Lopez, Randolph, Caceres, Rajmonda S., Bepler, Tristan, Walsh, Matthew E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258481/ https://www.ncbi.nlm.nih.gov/pubmed/37308471 http://dx.doi.org/10.1038/s41467-023-39022-2 |
Ejemplares similares
-
High-throughput determination of protein affinities using unmodified peptide libraries in nanomolar scale
por: Schulte, Clemens, et al.
Publicado: (2020) -
Robust Sub-nanomolar Library Preparation for High Throughput Next Generation Sequencing
por: Wu, Wells W., et al.
Publicado: (2018) -
Productive common light chain libraries yield diverse panels of high affinity bispecific antibodies
por: Van Blarcom, Thomas, et al.
Publicado: (2017) -
Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities
por: Minagawa, Hirotaka, et al.
Publicado: (2020) -
Massively multiplexed affinity characterization of therapeutic antibodies against SARS-CoV-2 variants
por: Engelhart, Emily, et al.
Publicado: (2022)