Cargando…

Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform

This study develops a new clustering method for high-dimensional zero-inflated time series data. The proposed method is based on thick-pen transform (TPT), in which the basic idea is to draw along the data with a pen of a given thickness. Since TPT is a multi-scale visualization technique, it provid...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minji, Oh, Hee-Seok, Lim, Yaeji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258486/
https://www.ncbi.nlm.nih.gov/pubmed/37359508
http://dx.doi.org/10.1007/s00357-023-09437-z
Descripción
Sumario:This study develops a new clustering method for high-dimensional zero-inflated time series data. The proposed method is based on thick-pen transform (TPT), in which the basic idea is to draw along the data with a pen of a given thickness. Since TPT is a multi-scale visualization technique, it provides some information on the temporal tendency of neighborhood values. We introduce a modified TPT, termed ‘ensemble TPT (e-TPT)’, to enhance the temporal resolution of zero-inflated time series data that is crucial for clustering them efficiently. Furthermore, this study defines a modified similarity measure for zero-inflated time series data considering e-TPT and proposes an efficient iterative clustering algorithm suitable for the proposed measure. Finally, the effectiveness of the proposed method is demonstrated by simulation experiments and two real datasets: step count data and newly confirmed COVID-19 case data.