Cargando…
Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workf...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258498/ https://www.ncbi.nlm.nih.gov/pubmed/37312973 http://dx.doi.org/10.1016/j.phro.2023.100453 |
_version_ | 1785057478813155328 |
---|---|
author | van den Berg, Ingeborg Savenije, Mark H.F. Teunissen, Frederik R. van de Pol, Sandrine M.G. Rasing, Marnix J.A. van Melick, Harm H.E. Brink, Wyger M. de Boer, Johannes C.J. van den Berg, Cornelis A.T. van der Voort van Zyp, Jochem R.N. |
author_facet | van den Berg, Ingeborg Savenije, Mark H.F. Teunissen, Frederik R. van de Pol, Sandrine M.G. Rasing, Marnix J.A. van Melick, Harm H.E. Brink, Wyger M. de Boer, Johannes C.J. van den Berg, Cornelis A.T. van der Voort van Zyp, Jochem R.N. |
author_sort | van den Berg, Ingeborg |
collection | PubMed |
description | BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. MATERIALS AND METHODS: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. RESULTS: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90–0.93) for the PB, 0.90 (IQR: 0.86–0.92) for the CCs, 0.79 (IQR: 0.77–0.83) for the IPAs, and 0.77 (IQR: 0.72–0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. CONCLUSIONS: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy. |
format | Online Article Text |
id | pubmed-10258498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102584982023-06-13 Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients van den Berg, Ingeborg Savenije, Mark H.F. Teunissen, Frederik R. van de Pol, Sandrine M.G. Rasing, Marnix J.A. van Melick, Harm H.E. Brink, Wyger M. de Boer, Johannes C.J. van den Berg, Cornelis A.T. van der Voort van Zyp, Jochem R.N. Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. MATERIALS AND METHODS: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. RESULTS: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90–0.93) for the PB, 0.90 (IQR: 0.86–0.92) for the CCs, 0.79 (IQR: 0.77–0.83) for the IPAs, and 0.77 (IQR: 0.72–0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. CONCLUSIONS: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy. Elsevier 2023-06-01 /pmc/articles/PMC10258498/ /pubmed/37312973 http://dx.doi.org/10.1016/j.phro.2023.100453 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Article van den Berg, Ingeborg Savenije, Mark H.F. Teunissen, Frederik R. van de Pol, Sandrine M.G. Rasing, Marnix J.A. van Melick, Harm H.E. Brink, Wyger M. de Boer, Johannes C.J. van den Berg, Cornelis A.T. van der Voort van Zyp, Jochem R.N. Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title | Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title_full | Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title_fullStr | Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title_full_unstemmed | Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title_short | Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
title_sort | deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258498/ https://www.ncbi.nlm.nih.gov/pubmed/37312973 http://dx.doi.org/10.1016/j.phro.2023.100453 |
work_keys_str_mv | AT vandenbergingeborg deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT savenijemarkhf deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT teunissenfrederikr deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT vandepolsandrinemg deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT rasingmarnixja deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT vanmelickharmhe deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT brinkwygerm deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT deboerjohannescj deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT vandenbergcornelisat deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients AT vandervoortvanzypjochemrn deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients |