Cargando…

Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients

BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workf...

Descripción completa

Detalles Bibliográficos
Autores principales: van den Berg, Ingeborg, Savenije, Mark H.F., Teunissen, Frederik R., van de Pol, Sandrine M.G., Rasing, Marnix J.A., van Melick, Harm H.E., Brink, Wyger M., de Boer, Johannes C.J., van den Berg, Cornelis A.T., van der Voort van Zyp, Jochem R.N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258498/
https://www.ncbi.nlm.nih.gov/pubmed/37312973
http://dx.doi.org/10.1016/j.phro.2023.100453
_version_ 1785057478813155328
author van den Berg, Ingeborg
Savenije, Mark H.F.
Teunissen, Frederik R.
van de Pol, Sandrine M.G.
Rasing, Marnix J.A.
van Melick, Harm H.E.
Brink, Wyger M.
de Boer, Johannes C.J.
van den Berg, Cornelis A.T.
van der Voort van Zyp, Jochem R.N.
author_facet van den Berg, Ingeborg
Savenije, Mark H.F.
Teunissen, Frederik R.
van de Pol, Sandrine M.G.
Rasing, Marnix J.A.
van Melick, Harm H.E.
Brink, Wyger M.
de Boer, Johannes C.J.
van den Berg, Cornelis A.T.
van der Voort van Zyp, Jochem R.N.
author_sort van den Berg, Ingeborg
collection PubMed
description BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. MATERIALS AND METHODS: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. RESULTS: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90–0.93) for the PB, 0.90 (IQR: 0.86–0.92) for the CCs, 0.79 (IQR: 0.77–0.83) for the IPAs, and 0.77 (IQR: 0.72–0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. CONCLUSIONS: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy.
format Online
Article
Text
id pubmed-10258498
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-102584982023-06-13 Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients van den Berg, Ingeborg Savenije, Mark H.F. Teunissen, Frederik R. van de Pol, Sandrine M.G. Rasing, Marnix J.A. van Melick, Harm H.E. Brink, Wyger M. de Boer, Johannes C.J. van den Berg, Cornelis A.T. van der Voort van Zyp, Jochem R.N. Phys Imaging Radiat Oncol Original Research Article BACKGROUND AND PURPOSE: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. MATERIALS AND METHODS: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. RESULTS: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90–0.93) for the PB, 0.90 (IQR: 0.86–0.92) for the CCs, 0.79 (IQR: 0.77–0.83) for the IPAs, and 0.77 (IQR: 0.72–0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. CONCLUSIONS: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy. Elsevier 2023-06-01 /pmc/articles/PMC10258498/ /pubmed/37312973 http://dx.doi.org/10.1016/j.phro.2023.100453 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Original Research Article
van den Berg, Ingeborg
Savenije, Mark H.F.
Teunissen, Frederik R.
van de Pol, Sandrine M.G.
Rasing, Marnix J.A.
van Melick, Harm H.E.
Brink, Wyger M.
de Boer, Johannes C.J.
van den Berg, Cornelis A.T.
van der Voort van Zyp, Jochem R.N.
Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title_full Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title_fullStr Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title_full_unstemmed Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title_short Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
title_sort deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258498/
https://www.ncbi.nlm.nih.gov/pubmed/37312973
http://dx.doi.org/10.1016/j.phro.2023.100453
work_keys_str_mv AT vandenbergingeborg deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT savenijemarkhf deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT teunissenfrederikr deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT vandepolsandrinemg deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT rasingmarnixja deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT vanmelickharmhe deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT brinkwygerm deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT deboerjohannescj deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT vandenbergcornelisat deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients
AT vandervoortvanzypjochemrn deeplearningforautomatedcontouringofneurovascularstructuresonmagneticresonanceimagingforprostatecancerpatients