Cargando…
A palladium(0)–threonine complex immobilized on the surface of magnetic mesocellular foam: an efficient, stable, and magnetically separable nanocatalyst for Suzuki, Stille, and Heck cross-coupling reactions
In this study, a new palladium nanocatalyst was supported on l-threonine functionalized magnetic mesocellular silica foams (MMCF@Thr-Pd) and was characterized by FT-IR, XRD, BET, SEM, EDS, VSM, TGA, ICP-OES and elemental mapping techniques. The obtained MMCF@Thr-Pd performance can show excellent cat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258685/ https://www.ncbi.nlm.nih.gov/pubmed/37313518 http://dx.doi.org/10.1039/d3ra02721j |
Sumario: | In this study, a new palladium nanocatalyst was supported on l-threonine functionalized magnetic mesocellular silica foams (MMCF@Thr-Pd) and was characterized by FT-IR, XRD, BET, SEM, EDS, VSM, TGA, ICP-OES and elemental mapping techniques. The obtained MMCF@Thr-Pd performance can show excellent catalytic activity for Stille, Suzuki, and Heck coupling reactions, and the corresponding products were obtained with high yields. More importantly, the efficient and stable MMCF@Thr-Pd nanocatalyst was recovered by applying an external magnetic field and reused for at least five consecutive runs without a change in the catalytic activity. |
---|