Cargando…

A recent overview of surfactant–drug interactions and their importance

This review focuses on the self-aggregation properties of different drugs, as well as on their interaction with anionic, cationic, and gemini surfactants. The interaction of drugs with surfactants has been reviewed concerning conductivity, surface tension, viscosity, density, and UV-Vis spectrophoto...

Descripción completa

Detalles Bibliográficos
Autores principales: Pokhrel, Dilli Ram, Sah, Manish Kumar, Gautam, Bibaran, Basak, Hriday Kumar, Bhattarai, Ajaya, Chatterjee, Abhik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258811/
https://www.ncbi.nlm.nih.gov/pubmed/37312992
http://dx.doi.org/10.1039/d3ra02883f
Descripción
Sumario:This review focuses on the self-aggregation properties of different drugs, as well as on their interaction with anionic, cationic, and gemini surfactants. The interaction of drugs with surfactants has been reviewed concerning conductivity, surface tension, viscosity, density, and UV-Vis spectrophotometric measurements, and their relation with critical micelle concentration (CMC), cloud point, and binding constant. The conductivity measurement technique is used for the micellization of ionic surfactants. Cloud point studies can be used for the non-ionic, and also for certain ionic surfactants. Usually, surface tension studies are mostly employed for non-ionic surfactants. The degree of dissociation that is determined is used to evaluate thermodynamic parameters of micellization at various temperatures. The effect of external parameters like temperature, salt, solvent, pH, etc., is discussed for thermodynamics parameters using recent experimental works on drug-surfactant interactions. Consequences of drug–surfactant interaction, condition of drugs during interaction with surfactants, and applications of drug–surfactant interaction are being generalized which reflects current and future potential uses of drug–surfactant interactions.