Cargando…

Preliminary research of the classification of the brain acute stroke lesions by the Diffusion Kurtosis Imaging (DKI) and Diffusion Weighted Imaging (DWI) parameters

BACKGROUND: Diffusion-weighted magnetic resonance imaging (DWI) is a mature scanning technique. With high sensitivity in detecting cerebral infractions, it has become an essential part of the clinical evaluation of acute stroke. However, with the update in medical ideals and treatment, clinicians ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xin, Zhang, Ying, Chen, Fang, Wang, Lei, Luo, Wenbin, Zheng, Ye, Yan, Gen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IOS Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258876/
https://www.ncbi.nlm.nih.gov/pubmed/37066948
http://dx.doi.org/10.3233/THC-236046
Descripción
Sumario:BACKGROUND: Diffusion-weighted magnetic resonance imaging (DWI) is a mature scanning technique. With high sensitivity in detecting cerebral infractions, it has become an essential part of the clinical evaluation of acute stroke. However, with the update in medical ideals and treatment, clinicians are now focusing on distinguishing between reversible and irreversible brain tissue damage rather than detecting ischaemic lesions alone. OBJECTIVE: We supposed that Diffusion Kurtosis Imaging (DKI) could classify heterogeneous DWI lesions, deepening the understanding of tissue injury. We systematically studied the different parameters of DKI in acute stroke patients in the literature. METHODS: We collected 41 patients (26 male, 15 female), including different infarctions with acute cerebral infarction in different brain regions. Of all patients, 20 were single-infarction, while others were multi-infarctions. In this paper, we categorized acute cerebral infarction lesions into two types according to the parametric characteristics of both DKI and DWI. Type I means the DKI and DWI were matched, and Type II means the DKI and DWI were mismatched. Based on each parametric map, the region of interest (ROI) is outlined in each most severe lesion area (as large as possible in the center of the lesion). In the control group, ROIs of the same size are located in the corresponding regions of the contralateral hemisphere. RESULTS: In both Type I and Type II, all parameters conform to a normal distribution. An independent sample T-test was used to compare the differences between each group. In Type I, we found the FA, MD, Da, Dr, MK and Ka values were statistically different ([Formula: see text] 0.05), while in Type II, only the MK and Ka values were statistically different ([Formula: see text] 0.05). CONCLUSION: DKI, compared to DWI, can provide more imaging information about intracranial ischemic infarction, which can deepen the understanding of the mechanism of ischemic tissue damage. Our classification of the brain acute stroke lesions by DKI parameters and DWI may help us rediscover the real core of infraction.