Cargando…
Biomedical named entity recognition based on fusion multi-features embedding
BACKGROUND: With the exponential increase in the volume of biomedical literature, text mining tasks are becoming increasingly important in the medical domain. Named entities are the primary identification tasks in text mining, prerequisites and critical parts for building medical domain knowledge gr...
Autores principales: | Li, Meijing, Yang, Hao, Liu, Yuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258877/ https://www.ncbi.nlm.nih.gov/pubmed/37038786 http://dx.doi.org/10.3233/THC-236011 |
Ejemplares similares
-
Deep learning with word embeddings improves biomedical named entity recognition
por: Habibi, Maryam, et al.
Publicado: (2017) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations
por: Munkhdalai, Tsendsuren, et al.
Publicado: (2015) -
Evaluating Word Representation Features in Biomedical Named Entity Recognition Tasks
por: Tang, Buzhou, et al.
Publicado: (2014) -
Biomedical named entity recognition with the combined feature attention and fully-shared multi-task learning
por: Zhang, Zhiyu, et al.
Publicado: (2022)