Cargando…
Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods
BACKGROUND: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS: The total protein was isolated from OA (n = 13) and control (n = 11) cartila...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258941/ https://www.ncbi.nlm.nih.gov/pubmed/37308935 http://dx.doi.org/10.1186/s13075-023-03084-w |
_version_ | 1785057564048752640 |
---|---|
author | Yu, Hanjie Li, Mingxiu Shu, Jian Dang, Liuyi Wu, Xin Wang, Yuzi Wang, Xuan Chang, Xin Bao, Xiaojuan Zhu, Bojing Ren, Xiameng Chen, Wentian Li, Yi |
author_facet | Yu, Hanjie Li, Mingxiu Shu, Jian Dang, Liuyi Wu, Xin Wang, Yuzi Wang, Xuan Chang, Xin Bao, Xiaojuan Zhu, Bojing Ren, Xiameng Chen, Wentian Li, Yi |
author_sort | Yu, Hanjie |
collection | PubMed |
description | BACKGROUND: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS: The total protein was isolated from OA (n = 13) and control (n = 11) cartilages. Subsequently, glycosylation alterations of glycoproteins in OA cartilage were investigated by lectin microarrays and intact glycopeptides analysis. Finally, the expression of glycosyltransferases involved in the synthesis of altered glycosylation was assessed by qPCR and GEO database. RESULTS: Our findings revealed that several glycopatterns, such as α-1,3/6 fucosylation and high-mannose type of N-glycans were altered in OA cartilages. Notably, over 27% of identified glycopeptides (109 glycopeptides derived from 47 glycoproteins mainly located in the extracellular region) disappeared or decreased in OA cartilages, which is related to the cartilage matrix degradation. Interestingly, the microheterogeneity of N-glycans on fibronectin and aggrecan core protein was observed in OA cartilage. Our results combined with GEO data indicated that the pro-inflammatory cytokines altered the expression of glycosyltransferases (ALG3, ALG5, MGAT4C, and MGAT5) which may contribute to the alterations in glycosylation. CONCLUSION: Our study revealed the abnormal glycopatterns and heterogeneities of site-specific glycosylation associated with OA. To our knowledge, it is the first time that the heterogeneity of site-specific N-glycans was reported in OA cartilage. The results of gene expression analysis suggested that the expression of glycosyltransferases was impacted by pro-inflammatory cytokines, which may facilitate the degradation of protein and accelerate the process of OA. Our findings provide valuable information for the understanding of molecular mechanisms in the pathogenesis of OA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-023-03084-w. |
format | Online Article Text |
id | pubmed-10258941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-102589412023-06-13 Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods Yu, Hanjie Li, Mingxiu Shu, Jian Dang, Liuyi Wu, Xin Wang, Yuzi Wang, Xuan Chang, Xin Bao, Xiaojuan Zhu, Bojing Ren, Xiameng Chen, Wentian Li, Yi Arthritis Res Ther Research BACKGROUND: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS: The total protein was isolated from OA (n = 13) and control (n = 11) cartilages. Subsequently, glycosylation alterations of glycoproteins in OA cartilage were investigated by lectin microarrays and intact glycopeptides analysis. Finally, the expression of glycosyltransferases involved in the synthesis of altered glycosylation was assessed by qPCR and GEO database. RESULTS: Our findings revealed that several glycopatterns, such as α-1,3/6 fucosylation and high-mannose type of N-glycans were altered in OA cartilages. Notably, over 27% of identified glycopeptides (109 glycopeptides derived from 47 glycoproteins mainly located in the extracellular region) disappeared or decreased in OA cartilages, which is related to the cartilage matrix degradation. Interestingly, the microheterogeneity of N-glycans on fibronectin and aggrecan core protein was observed in OA cartilage. Our results combined with GEO data indicated that the pro-inflammatory cytokines altered the expression of glycosyltransferases (ALG3, ALG5, MGAT4C, and MGAT5) which may contribute to the alterations in glycosylation. CONCLUSION: Our study revealed the abnormal glycopatterns and heterogeneities of site-specific glycosylation associated with OA. To our knowledge, it is the first time that the heterogeneity of site-specific N-glycans was reported in OA cartilage. The results of gene expression analysis suggested that the expression of glycosyltransferases was impacted by pro-inflammatory cytokines, which may facilitate the degradation of protein and accelerate the process of OA. Our findings provide valuable information for the understanding of molecular mechanisms in the pathogenesis of OA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-023-03084-w. BioMed Central 2023-06-12 2023 /pmc/articles/PMC10258941/ /pubmed/37308935 http://dx.doi.org/10.1186/s13075-023-03084-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Yu, Hanjie Li, Mingxiu Shu, Jian Dang, Liuyi Wu, Xin Wang, Yuzi Wang, Xuan Chang, Xin Bao, Xiaojuan Zhu, Bojing Ren, Xiameng Chen, Wentian Li, Yi Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title | Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title_full | Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title_fullStr | Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title_full_unstemmed | Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title_short | Characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
title_sort | characterization of aberrant glycosylation associated with osteoarthritis based on integrated glycomics methods |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258941/ https://www.ncbi.nlm.nih.gov/pubmed/37308935 http://dx.doi.org/10.1186/s13075-023-03084-w |
work_keys_str_mv | AT yuhanjie characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT limingxiu characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT shujian characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT dangliuyi characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT wuxin characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT wangyuzi characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT wangxuan characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT changxin characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT baoxiaojuan characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT zhubojing characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT renxiameng characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT chenwentian characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods AT liyi characterizationofaberrantglycosylationassociatedwithosteoarthritisbasedonintegratedglycomicsmethods |