Cargando…
Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms
BACKGROUND: The severity of coronavirus (COVID-19) in patients with chronic comorbidities is much higher than in other patients, which can lead to their death. Machine learning (ML) algorithms as a potential solution for rapid and early clinical evaluation of the severity of the disease can help in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259141/ https://www.ncbi.nlm.nih.gov/pubmed/37312960 http://dx.doi.org/10.1177/20552076231170493 |
_version_ | 1785057605500010496 |
---|---|
author | Amiri, Parastoo Montazeri, Mahdieh Ghasemian, Fahimeh Asadi, Fatemeh Niksaz, Saeed Sarafzadeh, Farhad Khajouei, Reza |
author_facet | Amiri, Parastoo Montazeri, Mahdieh Ghasemian, Fahimeh Asadi, Fatemeh Niksaz, Saeed Sarafzadeh, Farhad Khajouei, Reza |
author_sort | Amiri, Parastoo |
collection | PubMed |
description | BACKGROUND: The severity of coronavirus (COVID-19) in patients with chronic comorbidities is much higher than in other patients, which can lead to their death. Machine learning (ML) algorithms as a potential solution for rapid and early clinical evaluation of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. OBJECTIVE: The objective of this study was to predict the mortality risk and length of stay (LoS) of patients with COVID-19 and history of chronic comorbidities using ML algorithms. METHODS: This retrospective study was conducted by reviewing the medical records of COVID-19 patients with a history of chronic comorbidities from March 2020 to January 2021 in Afzalipour Hospital in Kerman, Iran. The outcome of patients, hospitalization was recorded as discharge or death. The filtering technique used to score the features and well-known ML algorithms were applied to predict the risk of mortality and LoS of patients. Ensemble Learning methods is also used. To evaluate the performance of the models, different measures including F1, precision, recall, and accuracy were calculated. The TRIPOD guideline assessed transparent reporting. RESULTS: This study was performed on 1291 patients, including 900 alive and 391 dead patients. Shortness of breath (53.6%), fever (30.1%), and cough (25.3%) were the three most common symptoms in patients. Diabetes mellitus(DM) (31.3%), hypertension (HTN) (27.3%), and ischemic heart disease (IHD) (14.2%) were the three most common chronic comorbidities of patients. Twenty-six important factors were extracted from each patient's record. Gradient boosting model with 84.15% accuracy was the best model for predicting mortality risk and multilayer perceptron (MLP) with rectified linear unit function (MSE = 38.96) was the best model for predicting the LoS. The most common chronic comorbidities among these patients were DM (31.3%), HTN (27.3%), and IHD (14.2%). The most important factors in predicting the risk of mortality were hyperlipidemia, diabetes, asthma, and cancer, and in predicting LoS was shortness of breath. CONCLUSION: The results of this study showed that the use of ML algorithms can be a good tool to predict the risk of mortality and LoS of patients with COVID-19 and chronic comorbidities based on physiological conditions, symptoms, and demographic information of patients. The Gradient boosting and MLP algorithms can quickly identify patients at risk of death or long-term hospitalization and notify physicians to do appropriate interventions. |
format | Online Article Text |
id | pubmed-10259141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-102591412023-06-13 Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms Amiri, Parastoo Montazeri, Mahdieh Ghasemian, Fahimeh Asadi, Fatemeh Niksaz, Saeed Sarafzadeh, Farhad Khajouei, Reza Digit Health Original Research BACKGROUND: The severity of coronavirus (COVID-19) in patients with chronic comorbidities is much higher than in other patients, which can lead to their death. Machine learning (ML) algorithms as a potential solution for rapid and early clinical evaluation of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. OBJECTIVE: The objective of this study was to predict the mortality risk and length of stay (LoS) of patients with COVID-19 and history of chronic comorbidities using ML algorithms. METHODS: This retrospective study was conducted by reviewing the medical records of COVID-19 patients with a history of chronic comorbidities from March 2020 to January 2021 in Afzalipour Hospital in Kerman, Iran. The outcome of patients, hospitalization was recorded as discharge or death. The filtering technique used to score the features and well-known ML algorithms were applied to predict the risk of mortality and LoS of patients. Ensemble Learning methods is also used. To evaluate the performance of the models, different measures including F1, precision, recall, and accuracy were calculated. The TRIPOD guideline assessed transparent reporting. RESULTS: This study was performed on 1291 patients, including 900 alive and 391 dead patients. Shortness of breath (53.6%), fever (30.1%), and cough (25.3%) were the three most common symptoms in patients. Diabetes mellitus(DM) (31.3%), hypertension (HTN) (27.3%), and ischemic heart disease (IHD) (14.2%) were the three most common chronic comorbidities of patients. Twenty-six important factors were extracted from each patient's record. Gradient boosting model with 84.15% accuracy was the best model for predicting mortality risk and multilayer perceptron (MLP) with rectified linear unit function (MSE = 38.96) was the best model for predicting the LoS. The most common chronic comorbidities among these patients were DM (31.3%), HTN (27.3%), and IHD (14.2%). The most important factors in predicting the risk of mortality were hyperlipidemia, diabetes, asthma, and cancer, and in predicting LoS was shortness of breath. CONCLUSION: The results of this study showed that the use of ML algorithms can be a good tool to predict the risk of mortality and LoS of patients with COVID-19 and chronic comorbidities based on physiological conditions, symptoms, and demographic information of patients. The Gradient boosting and MLP algorithms can quickly identify patients at risk of death or long-term hospitalization and notify physicians to do appropriate interventions. SAGE Publications 2023-06-06 /pmc/articles/PMC10259141/ /pubmed/37312960 http://dx.doi.org/10.1177/20552076231170493 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Research Amiri, Parastoo Montazeri, Mahdieh Ghasemian, Fahimeh Asadi, Fatemeh Niksaz, Saeed Sarafzadeh, Farhad Khajouei, Reza Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title | Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title_full | Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title_fullStr | Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title_full_unstemmed | Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title_short | Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms |
title_sort | prediction of mortality risk and duration of hospitalization of covid-19 patients with chronic comorbidities based on machine learning algorithms |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259141/ https://www.ncbi.nlm.nih.gov/pubmed/37312960 http://dx.doi.org/10.1177/20552076231170493 |
work_keys_str_mv | AT amiriparastoo predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT montazerimahdieh predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT ghasemianfahimeh predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT asadifatemeh predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT niksazsaeed predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT sarafzadehfarhad predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms AT khajoueireza predictionofmortalityriskanddurationofhospitalizationofcovid19patientswithchroniccomorbiditiesbasedonmachinelearningalgorithms |