Cargando…
Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions
The need for more efficient catalytic processes is ever-growing, and so are the costs associated with experimentally searching chemical space to find new promising catalysts. Despite the consolidated use of density functional theory (DFT) and other atomistic models for virtually screening molecules...
Autores principales: | Schilter, Oliver, Vaucher, Alain, Schwaller, Philippe, Laino, Teodoro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259369/ https://www.ncbi.nlm.nih.gov/pubmed/37312682 http://dx.doi.org/10.1039/d2dd00125j |
Ejemplares similares
-
Enhancing diversity in language based models for single-step retrosynthesis
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Palladium catalyst imbedded in polymers of intrinsic microporosity for the Suzuki–Miyaura coupling reaction
por: Xu, Junwen, et al.
Publicado: (2018) -
Denitrogenative Suzuki and carbonylative Suzuki coupling reactions of benzotriazoles with boronic acids
por: Wang, Yuanhao, et al.
Publicado: (2017) -
Aqueous Suzuki couplings mediated by a hydrophobic catalyst
por: Hong, Sheng-Bo, et al.
Publicado: (2022) -
Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning
por: Toniato, Alessandra, et al.
Publicado: (2023)