Cargando…
Quantum chemical data generation as fill-in for reliability enhancement of machine-learning reaction and retrosynthesis planning
Data-driven synthesis planning has seen remarkable successes in recent years by virtue of modern approaches of artificial intelligence that efficiently exploit vast databases with experimental data on chemical reactions. However, this success story is intimately connected to the availability of exis...
Autores principales: | Toniato, Alessandra, Unsleber, Jan P., Vaucher, Alain C., Weymuth, Thomas, Probst, Daniel, Laino, Teodoro, Reiher, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259370/ https://www.ncbi.nlm.nih.gov/pubmed/37312681 http://dx.doi.org/10.1039/d3dd00006k |
Ejemplares similares
-
Enhancing diversity in language based models for single-step retrosynthesis
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Unbiasing Retrosynthesis Language Models with Disconnection
Prompts
por: Thakkar, Amol, et al.
Publicado: (2023) -
Fast Customization
of Chemical Language Models to
Out-of-Distribution Data Sets
por: Toniato, Alessandra, et al.
Publicado: (2023) -
Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning
por: Zhang, Baicheng, et al.
Publicado: (2022) -
Inferring experimental procedures from text-based representations of chemical reactions
por: Vaucher, Alain C., et al.
Publicado: (2021)