Cargando…
Chemoselective derivatisation and ultrahigh resolution mass spectrometry for the determination of hydroxyl functional groups within complex bio-oils
Bio-oils are a renewable alternative resource for the production of fine chemicals and fuels. Bio-oils are characterised by a high content of oxygenated compounds with a diverse array of different chemical functionalities. Here, we performed a chemical reaction to transform the hydroxyl group of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259504/ https://www.ncbi.nlm.nih.gov/pubmed/37312997 http://dx.doi.org/10.1039/d3ra02779a |
Sumario: | Bio-oils are a renewable alternative resource for the production of fine chemicals and fuels. Bio-oils are characterised by a high content of oxygenated compounds with a diverse array of different chemical functionalities. Here, we performed a chemical reaction to transform the hydroxyl group of the various components in a bio-oil prior to characterisation with ultrahigh resolution mass spectrometry (UHRMS). The derivatisations were first evaluated using twenty lignin-representative standards with different structural features. Our results indicate a highly chemoselective transformation of the hydroxyl group despite the presence of other functional groups. Mono- and di-acetate products were observed in acetone–acetic anhydride (acetone–Ac(2)O) mixtures for non-sterically hindered phenols, catechols and benzene diols. Dimethyl sulfoxide–Ac(2)O (DMSO–Ac(2)O) reactions favoured the oxidation of primary and secondary alcohols and the formation of methylthiomethyl (MTM) products of phenols. The derivatisations were then performed in a complex bio-oil sample to gain insights into the hydroxyl group profile of the bio-oil. Our results indicate that the bio-oil before derivatisation is composed of 4500 elemental compositions containing 1–12 oxygen atoms. After the derivatisation in DMSO–Ac(2)O mixtures, the total number of compositions increased approximately five-fold. The reaction was indicative of the variety of hydroxyl group profiles within the sample in particular the presence of phenols that were ortho and para substituted, non-hindered phenols (about 34%), aromatic alcohols (including benzylic and other non-phenolic alcohols) (25%), and aliphatic alcohols (6.3%) could be inferred. Phenolic compositions are known as coke precursors in catalytic pyrolysis and upgrading processes. Thus, the combination of chemoselective derivatisations in conjunction with UHRMS can be a valuable resource to outline the hydroxyl group profile in elemental chemical compositions in complex mixtures. |
---|