Cargando…

MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY

MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enric...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Richard, Luo, Zaili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260057/
http://dx.doi.org/10.1093/neuonc/noad073.235
_version_ 1785057778530779136
author Lu, Richard
Luo, Zaili
author_facet Lu, Richard
Luo, Zaili
author_sort Lu, Richard
collection PubMed
description MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a potent tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability.
format Online
Article
Text
id pubmed-10260057
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102600572023-06-13 MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY Lu, Richard Luo, Zaili Neuro Oncol Final Category: Medulloblastomas - MDB MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a potent tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability. Oxford University Press 2023-06-12 /pmc/articles/PMC10260057/ http://dx.doi.org/10.1093/neuonc/noad073.235 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Final Category: Medulloblastomas - MDB
Lu, Richard
Luo, Zaili
MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title_full MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title_fullStr MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title_full_unstemmed MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title_short MDB-02. NUCLEAR ENVELOPE PHOSPHATASE CTDNEP1 MUTATIONS POTENTIATE AGGRESSIVE MEDULLOBLASTOMA BY TRIGGERING MYC ACTIVATION AND GENOMIC INSTABILITY
title_sort mdb-02. nuclear envelope phosphatase ctdnep1 mutations potentiate aggressive medulloblastoma by triggering myc activation and genomic instability
topic Final Category: Medulloblastomas - MDB
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260057/
http://dx.doi.org/10.1093/neuonc/noad073.235
work_keys_str_mv AT lurichard mdb02nuclearenvelopephosphatasectdnep1mutationspotentiateaggressivemedulloblastomabytriggeringmycactivationandgenomicinstability
AT luozaili mdb02nuclearenvelopephosphatasectdnep1mutationspotentiateaggressivemedulloblastomabytriggeringmycactivationandgenomicinstability