Cargando…

MDB-23. ELP1 GERMLINE DEFICIENCY SENSITIZES THE GRANULE NEURON LINEAGE TO SHH MEDULLOBLASTOMA AND EXPOSES NOVEL THERAPEUTIC VULNERABILITIES

Germline loss-of-function (LOF) variants in Elongator complex protein 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB). ELP1 germline carriers develop SHH-MBs that exhibit coincident somatic PTCH1 mutations and universal loss-of-heterozygosity of the rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Lopez, Jesus, Ahmad, Shiekh Tanveer, Li, Yiran, Gudenas, Brian, Kojic, Marija, Manz, Friedrik, Jonchere, Barbara, Mayasundari, Anand, Pitre, Aaron, Hadley, Jennifer, Paul, Leena, Batts, Melissa, Pfister, Stefan, Waszak, Sebastian, Bianski, Brandon, Tinkle, Christopher, Orr, Brent, Rankovic, Zoran, Robinson, Giles, Wainwright, Brandon, Kutscher, Lena, Lin, Hong, Northcott, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260154/
http://dx.doi.org/10.1093/neuonc/noad073.255
Descripción
Sumario:Germline loss-of-function (LOF) variants in Elongator complex protein 1 (ELP1) are the most prevalent predisposing genetic events in childhood medulloblastoma (MB). ELP1 germline carriers develop SHH-MBs that exhibit coincident somatic PTCH1 mutations and universal loss-of-heterozygosity of the remaining ELP1 allele through chromosome 9q deletion. The molecular, biochemical, and cellular mechanisms by which germline ELP1/Elongator deficiency contribute to SHH-MB tumorigenesis remain largely unknown. Herein, we report that mice engineered to mimic germline Elp1 LOF (i.e., Elp1(HET)) seen in SHH-MB patients exhibit hallmark features of premalignancy events in cycling cerebellar granule neuron progenitors (GNPs), the lineage-of-origin for SHH-MB. Compared to wild-type counterparts, Elp1(HET) GNPs exhibit increased replication stress-associated DNA damage, homologous recombination-associated genomic instability, accelerated cell cycle kinetics, reduced p53-dependent apoptosis in response to genotoxic stress, and slowed differentiation. Orthotopic transplantation of Elp1(HET) GNPs harboring somatic Ptch1 inactivation into the cerebella of immunocompromised mice promotes onset of SHH-MB tumors with incomplete penetrance that exhibit reduced p53 transcriptional activity through a currently unknown mechanism(s). Concomitant Elp1 and Ptch1 gene targeting in p53-null GNPs reproduces highly penetrant cerebellar tumors recapitulating the molecular and phenotypic features of ELP1-associated SHH-MB. Finally, reactivation of the p53 pathway through preclinical treatment with an MDM2 inhibitor promotes cell death and prolongs the survival of patient-derived xenograft tumor (PDX) models harboring deleterious ELP1 mutations. Together, our findings reveal that germline Elp1 LOF heightens genomic instability and malignant transformation in cycling GNPs, providing a mechanistic model for the subgroup-restricted pattern of predisposition associated with pathogenic ELP1 germline carriers. These results provide essential mechanistic insight into the molecular and cellular basis of SHH-MB predisposition driven by ELP1 LOF and nominate therapies that overcome p53 pathway inhibition as a rational treatment option for affected children.